AdvFaces: Adversarial Face Synthesis

Debayan Deb, Jianbang Zhang, Anil K. Jain
{"title":"AdvFaces: Adversarial Face Synthesis","authors":"Debayan Deb, Jianbang Zhang, Anil K. Jain","doi":"10.1109/IJCB48548.2020.9304898","DOIUrl":null,"url":null,"abstract":"Face recognition systems have been shown to be vulnerable to adversarial faces resulting from adding small perturbations to probe images. Such adversarial images can lead state-of-the-art face matchers to falsely reject a genuine subject (obfuscation attack) or falsely match to an impostor (impersonation attack). Current approaches to crafting adversarial faces lack perceptual quality and take an unreasonable amount of time to generate them. We propose, AdvFaces, an automated adversarial face synthesis method that learns to generate minimal perturbations in the salient facial regions via Generative Adversarial Networks. Once AdvFaces is trained, a hacker can automatically generate imperceptible face perturbations that can evade four black-box state-of-the-art face matchers with attack success rates as high as 97.22% and 24.30% at 0.1 % False Accept Rate, for obfuscation and impersonation attacks, respectively.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

Face recognition systems have been shown to be vulnerable to adversarial faces resulting from adding small perturbations to probe images. Such adversarial images can lead state-of-the-art face matchers to falsely reject a genuine subject (obfuscation attack) or falsely match to an impostor (impersonation attack). Current approaches to crafting adversarial faces lack perceptual quality and take an unreasonable amount of time to generate them. We propose, AdvFaces, an automated adversarial face synthesis method that learns to generate minimal perturbations in the salient facial regions via Generative Adversarial Networks. Once AdvFaces is trained, a hacker can automatically generate imperceptible face perturbations that can evade four black-box state-of-the-art face matchers with attack success rates as high as 97.22% and 24.30% at 0.1 % False Accept Rate, for obfuscation and impersonation attacks, respectively.
AdvFaces:对抗性人脸合成
人脸识别系统已经被证明是脆弱的对抗性的面孔,导致添加小的扰动探测图像。这样的对抗图像可能导致最先进的面部匹配器错误地拒绝真实的对象(混淆攻击)或错误地匹配到冒名顶替者(模仿攻击)。目前制作对抗面孔的方法缺乏感知质量,并且需要花费不合理的时间来生成它们。我们提出了AdvFaces,一种自动对抗人脸合成方法,通过生成对抗网络学习在显著面部区域产生最小的扰动。一旦AdvFaces经过训练,黑客就可以自动生成难以察觉的面部扰动,可以逃避四种最先进的黑盒面部匹配器,针对混淆和冒充攻击,攻击成功率分别高达97.22%和24.30%(错误接受率为0.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信