{"title":"Ultrahigh-Q nanocavities fabricated by scanning probe microscope lithography on pre-patterned photonic crystal","authors":"A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi","doi":"10.1109/PHO.2011.6110558","DOIUrl":null,"url":null,"abstract":"The details of cavity formation mechanism are described in this paper. The pre-patterned structure is a line defect waveguide in a two-dimensional (2D) photonic crystal slab, and we assume that the refractive index is modulated in the yellow shaded region. A very small spatial index modulation (Δn/n <; 0.1%) changes the mode-gap edge frequency of the modified area to create barrier regions, while the unmodified area retains its original mode-gap edge frequency. As a result, an ultrahigh-Q cavity with a small volume can be created.","PeriodicalId":173679,"journal":{"name":"IEEE Photonic Society 24th Annual Meeting","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonic Society 24th Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHO.2011.6110558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The details of cavity formation mechanism are described in this paper. The pre-patterned structure is a line defect waveguide in a two-dimensional (2D) photonic crystal slab, and we assume that the refractive index is modulated in the yellow shaded region. A very small spatial index modulation (Δn/n <; 0.1%) changes the mode-gap edge frequency of the modified area to create barrier regions, while the unmodified area retains its original mode-gap edge frequency. As a result, an ultrahigh-Q cavity with a small volume can be created.