{"title":"Implementation of an N*N Fourier transform in order N instructions on a SIMD array","authors":"A. Chang, J. Selvage, A. Forman, P. Walker","doi":"10.1109/MDSP.1989.97097","DOIUrl":null,"url":null,"abstract":"Summary form only given. The discrete Fourier transform has been implemented on a single-instruction, multiple-data (SIMD) machine. The implementation demonstrates how an algorithm that is unsuited for use on a sequential machine can be very effective in a parallel machine. The SIMD machine is based on the Geometric Arithmetic Parallel Processor (GAPP). The Bluestein chirp algorithm, a variation of the chirp-Z algorithm, is the key to parallelizing the Fourier transform. When the chirp-Z is adapted to the parallel architecture of the GAPP array, the transform is reduced to O(N) operations as compared to O(N*N log N) on sequential machines. The GAPP array used to implement this algorithm is a 108*384 array. Each processing element is a one-bit serial ALU with 128 bits of RAM. Each processor is connected to its four nearest neighbors (north, south, east, and west) in a mesh configuration.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary form only given. The discrete Fourier transform has been implemented on a single-instruction, multiple-data (SIMD) machine. The implementation demonstrates how an algorithm that is unsuited for use on a sequential machine can be very effective in a parallel machine. The SIMD machine is based on the Geometric Arithmetic Parallel Processor (GAPP). The Bluestein chirp algorithm, a variation of the chirp-Z algorithm, is the key to parallelizing the Fourier transform. When the chirp-Z is adapted to the parallel architecture of the GAPP array, the transform is reduced to O(N) operations as compared to O(N*N log N) on sequential machines. The GAPP array used to implement this algorithm is a 108*384 array. Each processing element is a one-bit serial ALU with 128 bits of RAM. Each processor is connected to its four nearest neighbors (north, south, east, and west) in a mesh configuration.<>