An End-to-End Conversational Style Matching Agent

Rens Hoegen, Deepali Aneja, Daniel J. McDuff, M. Czerwinski
{"title":"An End-to-End Conversational Style Matching Agent","authors":"Rens Hoegen, Deepali Aneja, Daniel J. McDuff, M. Czerwinski","doi":"10.1145/3308532.3329473","DOIUrl":null,"url":null,"abstract":"We present an end-to-end voice-based conversational agent that is able to engage in naturalistic multi-turn dialogue and align with the interlocutor's conversational style. The system uses a series of deep neural network components for speech recognition, dialogue generation, prosodic analysis and speech synthesis to generate language and prosodic expression with qualities that match those of the user. We conducted a user study (N=30) in which participants talked with the agent for 15 to 20 minutes, resulting in over 8 hours of natural interaction data. Users with high consideration conversational styles reported the agent to be more trustworthy when it matched their conversational style. Whereas, users with high involvement conversational styles were indifferent. Finally, we provide design guidelines for multi-turn dialogue interactions using conversational style adaptation.","PeriodicalId":112642,"journal":{"name":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308532.3329473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

We present an end-to-end voice-based conversational agent that is able to engage in naturalistic multi-turn dialogue and align with the interlocutor's conversational style. The system uses a series of deep neural network components for speech recognition, dialogue generation, prosodic analysis and speech synthesis to generate language and prosodic expression with qualities that match those of the user. We conducted a user study (N=30) in which participants talked with the agent for 15 to 20 minutes, resulting in over 8 hours of natural interaction data. Users with high consideration conversational styles reported the agent to be more trustworthy when it matched their conversational style. Whereas, users with high involvement conversational styles were indifferent. Finally, we provide design guidelines for multi-turn dialogue interactions using conversational style adaptation.
端到端会话风格匹配代理
我们提出了一个端到端的基于语音的会话代理,它能够进行自然的多回合对话,并与对话者的会话风格保持一致。该系统使用一系列深度神经网络组件进行语音识别、对话生成、韵律分析和语音合成,生成与用户匹配的语言和韵律表达。我们进行了一项用户研究(N=30),其中参与者与代理交谈15至20分钟,产生超过8小时的自然交互数据。具有高考虑会话风格的用户报告说,当代理与他们的会话风格相匹配时,代理更值得信赖。而高介入会话风格的用户则无动于衷。最后,我们提供了使用会话风格适应的多回合对话交互的设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信