Neural Models for Detecting Binary Semantic Textual Similarity for Algerian and MSA

Wafia Adouane, Jean-Philippe Bernardy, Simon Dobnik
{"title":"Neural Models for Detecting Binary Semantic Textual Similarity for Algerian and MSA","authors":"Wafia Adouane, Jean-Philippe Bernardy, Simon Dobnik","doi":"10.18653/v1/W19-4609","DOIUrl":null,"url":null,"abstract":"We explore the extent to which neural networks can learn to identify semantically equivalent sentences from a small variable dataset using an end-to-end training. We collect a new noisy non-standardised user-generated Algerian (ALG) dataset and also translate it to Modern Standard Arabic (MSA) which serves as its regularised counterpart. We compare the performance of various models on both datasets and report the best performing configurations. The results show that relatively simple models composed of 2 LSTM layers outperform by far other more sophisticated attention-based architectures, for both ALG and MSA datasets.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We explore the extent to which neural networks can learn to identify semantically equivalent sentences from a small variable dataset using an end-to-end training. We collect a new noisy non-standardised user-generated Algerian (ALG) dataset and also translate it to Modern Standard Arabic (MSA) which serves as its regularised counterpart. We compare the performance of various models on both datasets and report the best performing configurations. The results show that relatively simple models composed of 2 LSTM layers outperform by far other more sophisticated attention-based architectures, for both ALG and MSA datasets.
阿尔及利亚语和MSA二元语义文本相似度检测的神经模型
我们探索了神经网络在多大程度上可以通过端到端训练从一个小变量数据集中学习识别语义等效的句子。我们收集了一个新的嘈杂的非标准化用户生成的阿尔及利亚语(ALG)数据集,并将其翻译为现代标准阿拉伯语(MSA),作为其正则化的对立物。我们比较了两个数据集上不同模型的性能,并报告了最佳性能配置。结果表明,对于ALG和MSA数据集,由2个LSTM层组成的相对简单的模型比其他更复杂的基于注意力的体系结构要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信