{"title":"Detecting Selected Network Covert Channels Using Machine Learning","authors":"Mehdi Chourib","doi":"10.1109/HPCS48598.2019.9188115","DOIUrl":null,"url":null,"abstract":"Network covert channels break a computer’s security policy to establish a stealthy communication. They are a threat being increasingly used by malicious software. Most previous studies on detecting network covert channels using Machine Learning (ML) were tested with a dataset that was created using one single covert channel tool and also are ineffective at classifying covert channels into patterns. In this paper, selected ML methods are applied to detect popular network covert channels. The capacity of detecting and classifying covert channels with high precision is demonstrated. A dataset was created from nine standard covert channel tools and the covert channels are then accordingly classified into patterns and labelled. Half of the generated dataset is used to train three different ML algorithms. The remaining half is used to verify the algorithms’ performance. The tested ML algorithms are Support Vector Machines (SVM), k-Nearest Neighbors (k-NN) and Deep Neural Networks (DNN). The k-NN model demonstrated the highest precision rate at 98% detection of a given covert channel and with a low false positive rate of 1%.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Network covert channels break a computer’s security policy to establish a stealthy communication. They are a threat being increasingly used by malicious software. Most previous studies on detecting network covert channels using Machine Learning (ML) were tested with a dataset that was created using one single covert channel tool and also are ineffective at classifying covert channels into patterns. In this paper, selected ML methods are applied to detect popular network covert channels. The capacity of detecting and classifying covert channels with high precision is demonstrated. A dataset was created from nine standard covert channel tools and the covert channels are then accordingly classified into patterns and labelled. Half of the generated dataset is used to train three different ML algorithms. The remaining half is used to verify the algorithms’ performance. The tested ML algorithms are Support Vector Machines (SVM), k-Nearest Neighbors (k-NN) and Deep Neural Networks (DNN). The k-NN model demonstrated the highest precision rate at 98% detection of a given covert channel and with a low false positive rate of 1%.