{"title":"Investigation of leading HPC I/O performance using a scientific-application derived benchmark","authors":"J. Borrill, L. Oliker, J. Shalf, H. Shan","doi":"10.1145/1362622.1362636","DOIUrl":null,"url":null,"abstract":"With the exponential growth of high-fidelity sensor and simulated data, the scientific community is increasingly reliant on ultrascale HPC resources to handle their data analysis requirements. However, to utilize such extreme computing power effectively, the I/O components must be designed in a balanced fashion, as any architectural bottleneck will quickly render the platform intolerably inefficient. To understand I/O performance of data-intensive applications in realistic computational settings, we develop a lightweight, portable benchmark called MADbench2, which is derived directly from a large-scale Cosmic Microwave Background (CMB) data analysis package. Our study represents one of the most comprehensive I/O analyses of modern parallel filesystems, examining a broad range of system architectures and configurations, including Lustre on the Cray XT3 and Intel Itanium2 cluster; GPFS on IBM Power5 and AMD Opteron platforms; two BlueGene/L installations utilizing GPFS and PVFS2 filesystems; and CXFS on the SGI Altix3700. We present extensive synchronous I/O performance data comparing a number of key parameters including concurrency, POSIX- versus MPI-IO, and unique- versus shared-file accesses, using both the default environment as well as highly-tuned I/O parameters. Finally, we explore the potential of asynchronous I/O and quantify the volume of computation required to hide a given volume of I/O. Overall our study quantifies the vast differences in performance and functionality of parallel filesystems across state-of-the-art platforms, while providing system designers and computational scientists a lightweight tool for conducting further analyses.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67
Abstract
With the exponential growth of high-fidelity sensor and simulated data, the scientific community is increasingly reliant on ultrascale HPC resources to handle their data analysis requirements. However, to utilize such extreme computing power effectively, the I/O components must be designed in a balanced fashion, as any architectural bottleneck will quickly render the platform intolerably inefficient. To understand I/O performance of data-intensive applications in realistic computational settings, we develop a lightweight, portable benchmark called MADbench2, which is derived directly from a large-scale Cosmic Microwave Background (CMB) data analysis package. Our study represents one of the most comprehensive I/O analyses of modern parallel filesystems, examining a broad range of system architectures and configurations, including Lustre on the Cray XT3 and Intel Itanium2 cluster; GPFS on IBM Power5 and AMD Opteron platforms; two BlueGene/L installations utilizing GPFS and PVFS2 filesystems; and CXFS on the SGI Altix3700. We present extensive synchronous I/O performance data comparing a number of key parameters including concurrency, POSIX- versus MPI-IO, and unique- versus shared-file accesses, using both the default environment as well as highly-tuned I/O parameters. Finally, we explore the potential of asynchronous I/O and quantify the volume of computation required to hide a given volume of I/O. Overall our study quantifies the vast differences in performance and functionality of parallel filesystems across state-of-the-art platforms, while providing system designers and computational scientists a lightweight tool for conducting further analyses.