Classifying vehicles with convolutional neural network and feature encoding

Shuang Wang, Zhengqi Li, Haijun Zhang, Yuzhu Ji, Yan Li
{"title":"Classifying vehicles with convolutional neural network and feature encoding","authors":"Shuang Wang, Zhengqi Li, Haijun Zhang, Yuzhu Ji, Yan Li","doi":"10.1109/INDIN.2016.7819266","DOIUrl":null,"url":null,"abstract":"Vehicle type recognition has many applications in video surveillance, urban traffic management and automatic driving. This paper presents a new vehicle type recognition method using feature encoding combined with Convolutional Neural Network (CNN). This method uses the CNN to learn the properties of the high-level image features. It is able to largely compensate the information loss if we use feature encoding solely. By contrast, to achieve satisfactory classification results, feature encoding algorithms do not need a large number of training samples. Thus, it can help CNN reduce the number of training samples. Therefore, we propose a hybrid algorithm by integrating method on vehicle type recognition in comparison to CNN, feature encoding algorithms and other competitive methods.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Vehicle type recognition has many applications in video surveillance, urban traffic management and automatic driving. This paper presents a new vehicle type recognition method using feature encoding combined with Convolutional Neural Network (CNN). This method uses the CNN to learn the properties of the high-level image features. It is able to largely compensate the information loss if we use feature encoding solely. By contrast, to achieve satisfactory classification results, feature encoding algorithms do not need a large number of training samples. Thus, it can help CNN reduce the number of training samples. Therefore, we propose a hybrid algorithm by integrating method on vehicle type recognition in comparison to CNN, feature encoding algorithms and other competitive methods.
基于卷积神经网络和特征编码的车辆分类方法
车辆类型识别在视频监控、城市交通管理和自动驾驶等领域有着广泛的应用。提出了一种将特征编码与卷积神经网络(CNN)相结合的新型车型识别方法。该方法使用CNN学习高级图像特征的属性。如果只使用特征编码,可以在很大程度上弥补信息损失。相比之下,为了获得令人满意的分类结果,特征编码算法不需要大量的训练样本。因此,可以帮助CNN减少训练样本的数量。因此,我们提出了一种混合算法,通过对CNN、特征编码算法和其他竞争方法的比较,对车辆类型识别进行集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信