Experience extending VLSI design with mathematical logic

Shiu-Kai Chin
{"title":"Experience extending VLSI design with mathematical logic","authors":"Shiu-Kai Chin","doi":"10.1109/MSE.1997.612526","DOIUrl":null,"url":null,"abstract":"The growing demands for assurance of properties like correctness, safety, and security have led to the development of design methods using mathematical logic. These methods have broad application to hardware, software, and system design. Design based on mathematical logic offers the capability to relate structural descriptions with behavioral descriptions and properties. The challenge is to move these methods into mainstream engineering. This requires teaching mathematical logic in engineering courses which are directly applicable to engineering design. This paper describes how formal logic is included in the computer engineering curriculum at Syracuse University, our experience teaching formal logic to engineers, and how VLSI circuits have been fabricated by students using a formal development process.","PeriodicalId":120048,"journal":{"name":"Proceedings of International Conference on Microelectronic Systems Education","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Microelectronic Systems Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSE.1997.612526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demands for assurance of properties like correctness, safety, and security have led to the development of design methods using mathematical logic. These methods have broad application to hardware, software, and system design. Design based on mathematical logic offers the capability to relate structural descriptions with behavioral descriptions and properties. The challenge is to move these methods into mainstream engineering. This requires teaching mathematical logic in engineering courses which are directly applicable to engineering design. This paper describes how formal logic is included in the computer engineering curriculum at Syracuse University, our experience teaching formal logic to engineers, and how VLSI circuits have been fabricated by students using a formal development process.
具有用数学逻辑扩展VLSI设计的经验
对诸如正确性、安全性和安全性等特性的保证需求的增长导致了使用数学逻辑的设计方法的发展。这些方法在硬件、软件和系统设计中有着广泛的应用。基于数学逻辑的设计提供了将结构描述与行为描述和属性联系起来的能力。挑战在于将这些方法引入主流工程。这就要求在工程课程中教授直接适用于工程设计的数理逻辑。本文描述了形式逻辑如何被纳入雪城大学的计算机工程课程,我们向工程师教授形式逻辑的经验,以及学生如何使用正式开发过程制造VLSI电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信