A small sample model selection criterion based on Kullback's symmetric divergence

A. Seghouane, M. Bekara, G. Fleury
{"title":"A small sample model selection criterion based on Kullback's symmetric divergence","authors":"A. Seghouane, M. Bekara, G. Fleury","doi":"10.1109/ICASSP.2003.1201639","DOIUrl":null,"url":null,"abstract":"The Kullback information criterion (KIC) is a recently developed tool for statistical model selection (Cavanaugh, J.E., Statistics and Probability Letters, vol.42, p.333-43, 1999). KIC serves as an asymptotically unbiased estimator of a variant of the Kullback symmetric divergence, known also as J-divergence. A bias correction of the Kullback symmetric information criterion is derived for linear models. The correction is of particular use when the sample size is small or when the number of fitted parameters is of a moderate to large fraction of the sample size. For linear regression models, the corrected method, called KICc, is an exactly unbiased estimator of a variant of the Kullback symmetric divergence between the true unknown model and the candidate fitted model. Furthermore, KICc is found to provide better model order choice than any other asymptotically efficient methods when applied to autoregressive time series models.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1201639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Kullback information criterion (KIC) is a recently developed tool for statistical model selection (Cavanaugh, J.E., Statistics and Probability Letters, vol.42, p.333-43, 1999). KIC serves as an asymptotically unbiased estimator of a variant of the Kullback symmetric divergence, known also as J-divergence. A bias correction of the Kullback symmetric information criterion is derived for linear models. The correction is of particular use when the sample size is small or when the number of fitted parameters is of a moderate to large fraction of the sample size. For linear regression models, the corrected method, called KICc, is an exactly unbiased estimator of a variant of the Kullback symmetric divergence between the true unknown model and the candidate fitted model. Furthermore, KICc is found to provide better model order choice than any other asymptotically efficient methods when applied to autoregressive time series models.
基于Kullback对称散度的小样本模型选择准则
Kullback信息准则(KIC)是最近发展起来的统计模型选择工具(Cavanaugh, J.E, Statistics and Probability Letters, vol.42, p.333- 43,1999)。KIC是Kullback对称散度的渐近无偏估计,也称为j散度。对线性模型导出了Kullback对称信息准则的偏置校正。当样本量很小或当拟合参数的数量占样本量的中等到较大比例时,这种校正特别有用。对于线性回归模型,称为KICc的修正方法是真实未知模型和候选拟合模型之间的Kullback对称散度的一种变体的完全无偏估计。此外,当应用于自回归时间序列模型时,发现KICc比任何其他渐近有效方法都能提供更好的模型顺序选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信