Local and global features fusion to estimate expression invariant human age

S. C. Agrawal, A. S. Jalal, R. Tripathi
{"title":"Local and global features fusion to estimate expression invariant human age","authors":"S. C. Agrawal, A. S. Jalal, R. Tripathi","doi":"10.1504/ijista.2020.10029020","DOIUrl":null,"url":null,"abstract":"Human beings can easily estimate the age or age group of a person from a facial image where as this capability is not prominent in machines. This problem becomes more complex due to presence of different facial expressions and age progression. In this paper, we introduced a novel method for age prediction using combination of local and global features. After detecting the face from image, we partition the facial image in 16 * 16 non-overlapping blocks and apply grey-level co-occurrence matrix (GLCM) on these blocks. After calculating four facial parts (eyes, forehead, left cheek and right cheek) from facial image, features from second local feature Gabor filter are obtained. Histogram of oriented gradients has been used as a global feature for feature extraction from complete face image. Experimental results show that fusion of local and global features perform better than existing approaches and reported 6.31 years mean absolute error (MAE) on PAL dataset.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijista.2020.10029020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Human beings can easily estimate the age or age group of a person from a facial image where as this capability is not prominent in machines. This problem becomes more complex due to presence of different facial expressions and age progression. In this paper, we introduced a novel method for age prediction using combination of local and global features. After detecting the face from image, we partition the facial image in 16 * 16 non-overlapping blocks and apply grey-level co-occurrence matrix (GLCM) on these blocks. After calculating four facial parts (eyes, forehead, left cheek and right cheek) from facial image, features from second local feature Gabor filter are obtained. Histogram of oriented gradients has been used as a global feature for feature extraction from complete face image. Experimental results show that fusion of local and global features perform better than existing approaches and reported 6.31 years mean absolute error (MAE) on PAL dataset.
局部和全局特征融合估计表达不变的人类年龄
人类可以很容易地从面部图像中估计一个人的年龄或年龄组,而这种能力在机器中并不突出。由于不同的面部表情和年龄的增长,这个问题变得更加复杂。本文提出了一种局部特征与全局特征相结合的年龄预测方法。从图像中检测出人脸后,将人脸图像划分为16 * 16个不重叠的块,并对这些块应用灰度共生矩阵(GLCM)。从人脸图像中计算出四个面部部位(眼睛、前额、左脸颊和右脸颊)后,得到第二个局部特征Gabor滤波器的特征。利用梯度方向直方图作为全局特征对完整人脸图像进行特征提取。实验结果表明,局部特征和全局特征的融合优于现有方法,在PAL数据集上的平均绝对误差(MAE)为6.31年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信