Neural networks for extracting unsymmetric principal components

S. Kung, K. Diamantaras
{"title":"Neural networks for extracting unsymmetric principal components","authors":"S. Kung, K. Diamantaras","doi":"10.1109/NNSP.1991.239536","DOIUrl":null,"url":null,"abstract":"The authors introduce two forms of unsymmetric principal component analysis (UPCA), namely the cross-correlation UPCA and the linear approximation UPCA problem. Both are concerned with the SVD of the input-teacher cross-correlation matrix itself (first problem) or after prewhitening (second problem). The second problem is also equivalent to reduced-rank Wiener filtering. For the former problem, the authors propose an unsymmetric linear model for extracting one or more components using lateral inhibition connections in the hidden layer. The numerical convergence properties of the model are theoretically established. For the linear approximation UPCA problem, one can apply back-propagation extended either using a straightforward deflation procedure or with the use of lateral orthogonalizing connections in the hidden layer. All proposed models were tested and the simulation results confirm the theoretical expectations.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The authors introduce two forms of unsymmetric principal component analysis (UPCA), namely the cross-correlation UPCA and the linear approximation UPCA problem. Both are concerned with the SVD of the input-teacher cross-correlation matrix itself (first problem) or after prewhitening (second problem). The second problem is also equivalent to reduced-rank Wiener filtering. For the former problem, the authors propose an unsymmetric linear model for extracting one or more components using lateral inhibition connections in the hidden layer. The numerical convergence properties of the model are theoretically established. For the linear approximation UPCA problem, one can apply back-propagation extended either using a straightforward deflation procedure or with the use of lateral orthogonalizing connections in the hidden layer. All proposed models were tested and the simulation results confirm the theoretical expectations.<>
非对称主成分提取的神经网络
介绍了非对称主成分分析(UPCA)的两种形式,即互相关UPCA和线性逼近UPCA问题。两者都关注输入-教师相互关联矩阵本身的SVD(第一个问题)或预白化后的SVD(第二个问题)。第二个问题也等价于降阶维纳滤波。对于前一个问题,作者提出了一种非对称线性模型,利用隐藏层中的横向抑制连接提取一个或多个分量。从理论上证明了该模型的数值收敛性。对于线性逼近UPCA问题,可以使用直接的压缩过程或使用隐藏层中的横向正交化连接来应用反向传播扩展。对所提出的模型进行了测试,仿真结果证实了理论预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信