Not a cute stroke: Analysis of Rule- and Neural Network-based Information Extraction Systems for Brain Radiology Reports

Andreas Grivas, Beatrice Alex, Claire Grover, R. Tobin, W. Whiteley
{"title":"Not a cute stroke: Analysis of Rule- and Neural Network-based Information Extraction Systems for Brain Radiology Reports","authors":"Andreas Grivas, Beatrice Alex, Claire Grover, R. Tobin, W. Whiteley","doi":"10.18653/v1/2020.louhi-1.4","DOIUrl":null,"url":null,"abstract":"We present an in-depth comparison of three clinical information extraction (IE) systems designed to perform entity recognition and negation detection on brain imaging reports: EdIE-R, a bespoke rule-based system, and two neural network models, EdIE-BiLSTM and EdIE-BERT, both multi-task learning models with a BiLSTM and BERT encoder respectively. We compare our models both on an in-sample and an out-of-sample dataset containing mentions of stroke findings and draw on our error analysis to suggest improvements for effective annotation when building clinical NLP models for a new domain. Our analysis finds that our rule-based system outperforms the neural models on both datasets and seems to generalise to the out-of-sample dataset. On the other hand, the neural models do not generalise negation to the out-of-sample dataset, despite metrics on the in-sample dataset suggesting otherwise.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.louhi-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present an in-depth comparison of three clinical information extraction (IE) systems designed to perform entity recognition and negation detection on brain imaging reports: EdIE-R, a bespoke rule-based system, and two neural network models, EdIE-BiLSTM and EdIE-BERT, both multi-task learning models with a BiLSTM and BERT encoder respectively. We compare our models both on an in-sample and an out-of-sample dataset containing mentions of stroke findings and draw on our error analysis to suggest improvements for effective annotation when building clinical NLP models for a new domain. Our analysis finds that our rule-based system outperforms the neural models on both datasets and seems to generalise to the out-of-sample dataset. On the other hand, the neural models do not generalise negation to the out-of-sample dataset, despite metrics on the in-sample dataset suggesting otherwise.
不是一个可爱的中风:基于规则和神经网络的脑放射学报告信息提取系统分析
我们深入比较了三种临床信息提取(IE)系统,用于对脑成像报告进行实体识别和否定检测:EdIE-R,一种定制的基于规则的系统,以及两个神经网络模型,EdIE-BiLSTM和EdIE-BERT,两者都是多任务学习模型,分别带有BiLSTM和BERT编码器。我们在样本内和样本外数据集上比较了我们的模型,其中包含提到中风的发现,并利用我们的误差分析来建议在为新领域构建临床NLP模型时有效注释的改进。我们的分析发现,我们基于规则的系统在两个数据集上都优于神经模型,并且似乎可以推广到样本外数据集。另一方面,神经模型不会将否定推广到样本外数据集,尽管样本内数据集的指标表明并非如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信