Automatic Handwriting Identification on Medieval Documents

M. Bulacu, Lambert Schomaker
{"title":"Automatic Handwriting Identification on Medieval Documents","authors":"M. Bulacu, Lambert Schomaker","doi":"10.1109/ICIAP.2007.33","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate the performance of text- independent writer identification methods on a handwriting dataset containing medieval English documents. Applicable identification rates are achieved by combining textural features (joint directional probability distributions) with allographic features (grapheme-emission distributions). The aim is to develop an automatic handwriting identification tool that can assist the paleographer in the task of determining the authorship of historical manuscripts.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"336 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

In this paper, we evaluate the performance of text- independent writer identification methods on a handwriting dataset containing medieval English documents. Applicable identification rates are achieved by combining textural features (joint directional probability distributions) with allographic features (grapheme-emission distributions). The aim is to develop an automatic handwriting identification tool that can assist the paleographer in the task of determining the authorship of historical manuscripts.
中世纪文献的自动笔迹识别
在本文中,我们评估了文本无关的写作者识别方法在包含中世纪英语文档的手写数据集上的性能。通过结合纹理特征(联合方向概率分布)和异位特征(石墨烯发射分布)来实现适用的识别率。其目的是开发一种自动笔迹识别工具,以帮助古文字学家确定历史手稿的作者身份。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信