The structure group for quasi-linear equations via universal enveloping algebras

P. Linares, F. Otto, Markus Tempelmayr
{"title":"The structure group for quasi-linear equations via universal enveloping algebras","authors":"P. Linares, F. Otto, Markus Tempelmayr","doi":"10.1090/cams/16","DOIUrl":null,"url":null,"abstract":"We replace trees by multi-indices as an index set of the abstract model space to tackle quasi-linear singular stochastic partial differential equations. We show that this approach is consistent with the postulates of regularity structures when it comes to the structure group, which arises from a Hopf algebra and a comodule.\n\nOur approach, where the dual of the abstract model space naturally embeds into a formal power series algebra, allows to interpret the structure group as a Lie group arising from a Lie algebra consisting of derivations on this power series algebra. These derivations in turn are the infinitesimal generators of two actions on the space of pairs (non-linearities, functions of space-time mod constants).\n\nWe also argue that there exist pre-Lie algebra and Hopf algebra morphisms between our structure and the tree-based one in the cases of branched rough paths (Grossman-Larson, Connes-Kreimer) and of the stochastic heat equation.","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We replace trees by multi-indices as an index set of the abstract model space to tackle quasi-linear singular stochastic partial differential equations. We show that this approach is consistent with the postulates of regularity structures when it comes to the structure group, which arises from a Hopf algebra and a comodule. Our approach, where the dual of the abstract model space naturally embeds into a formal power series algebra, allows to interpret the structure group as a Lie group arising from a Lie algebra consisting of derivations on this power series algebra. These derivations in turn are the infinitesimal generators of two actions on the space of pairs (non-linearities, functions of space-time mod constants). We also argue that there exist pre-Lie algebra and Hopf algebra morphisms between our structure and the tree-based one in the cases of branched rough paths (Grossman-Larson, Connes-Kreimer) and of the stochastic heat equation.
泛包络代数拟线性方程的结构群
我们用多指标代替树作为抽象模型空间的指标集来处理拟线性奇异随机偏微分方程。当涉及到由Hopf代数和模产生的结构群时,我们证明了这种方法与正则结构的公设是一致的。我们的方法将抽象模型空间的对偶自然地嵌入到正式的幂级数代数中,允许将结构群解释为由该幂级数代数上的导数组成的李代数产生的李群。这些推导依次是对空间(非线性,时空模常数函数)上的两个作用的无限小发生器。我们还认为,在分支粗糙路径(Grossman-Larson, Connes-Kreimer)和随机热方程的情况下,我们的结构与基于树的结构之间存在着pre-Lie代数和Hopf代数的态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信