Multi-modal Recognition of Mental Workload Using Empirical Mode Decomposition and Semi-Supervised Learning

Jianhua Zhang, Jianrong Li
{"title":"Multi-modal Recognition of Mental Workload Using Empirical Mode Decomposition and Semi-Supervised Learning","authors":"Jianhua Zhang, Jianrong Li","doi":"10.1109/CW.2019.00043","DOIUrl":null,"url":null,"abstract":"Real-time monitoring and analysis of human operator's mental workload (MWL) is crucial for development of adaptive/intelligent human-machine cooperative systems in various safety/mission-critical application fields. Although data-driven machine learning (ML) approach has shown promise in MWL recognition, it is usually difficult to acquire sufficient labeled data to train the ML model. This paper proposes semi-supervised extreme learning machines (SS-ELM) for MWL pattern classification using solely a small number of labeled data. The experimental data analysis results are presented to show the effectiveness of the proposed SS-ELM paradigm for the 3-class MWL classification.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time monitoring and analysis of human operator's mental workload (MWL) is crucial for development of adaptive/intelligent human-machine cooperative systems in various safety/mission-critical application fields. Although data-driven machine learning (ML) approach has shown promise in MWL recognition, it is usually difficult to acquire sufficient labeled data to train the ML model. This paper proposes semi-supervised extreme learning machines (SS-ELM) for MWL pattern classification using solely a small number of labeled data. The experimental data analysis results are presented to show the effectiveness of the proposed SS-ELM paradigm for the 3-class MWL classification.
基于经验模态分解和半监督学习的脑力负荷多模态识别
实时监测和分析操作人员的心理工作负荷(MWL)对于开发各种安全/关键任务应用领域的自适应/智能人机协作系统至关重要。尽管数据驱动机器学习(ML)方法在MWL识别中显示出前景,但通常很难获得足够的标记数据来训练ML模型。本文提出了半监督极限学习机(SS-ELM),用于仅使用少量标记数据的MWL模式分类。实验数据分析结果表明了所提出的SS-ELM范式对3类MWL分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信