Model Order Reduction for a Piecewise Linear System Based on Dynamic Mode Decomposition

A. Saito
{"title":"Model Order Reduction for a Piecewise Linear System Based on Dynamic Mode Decomposition","authors":"A. Saito","doi":"10.1115/detc2021-70764","DOIUrl":null,"url":null,"abstract":"\n This paper presents a data-driven model order reduction strategy for nonlinear systems based on dynamic mode decomposition (DMD). First, the theory of DMD is briefly reviewed and its extension to model order reduction of nonlinear systems based on Galerkin projection is introduced. The proposed method utilizes impulse response of the nonlinear system to obtain snapshots of the state variables, and extracts dynamic modes that are then used for the projection basis vectors. The equations of motion of the system can then be projected onto the subspace spanned by the basis vectors, which produces the projected governing equations with much smaller number of degrees of freedom (DOFs). The method is applied to the construction of the reduced order model (ROM) of a finite element model (FEM) of a cantilevered beam subjected to a piecewise-linear boundary condition. First, impulse response analysis of the beam is conducted to obtain the snapshot matrix of the nodal displacements. The DMD is then applied to extract the DMD modes and eigenvalues. The extracted DMD mode shapes can be used to form a reduction basis for the Galerkin projection of the equation of motion. The obtained ROM has been used to conduct the forced response calculation of the beam subjected to the piecewise linear boundary condition. The results obtained by the ROM agree well with that obtained by the full-order FEM model.","PeriodicalId":425665,"journal":{"name":"Volume 10: 33rd Conference on Mechanical Vibration and Sound (VIB)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 33rd Conference on Mechanical Vibration and Sound (VIB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a data-driven model order reduction strategy for nonlinear systems based on dynamic mode decomposition (DMD). First, the theory of DMD is briefly reviewed and its extension to model order reduction of nonlinear systems based on Galerkin projection is introduced. The proposed method utilizes impulse response of the nonlinear system to obtain snapshots of the state variables, and extracts dynamic modes that are then used for the projection basis vectors. The equations of motion of the system can then be projected onto the subspace spanned by the basis vectors, which produces the projected governing equations with much smaller number of degrees of freedom (DOFs). The method is applied to the construction of the reduced order model (ROM) of a finite element model (FEM) of a cantilevered beam subjected to a piecewise-linear boundary condition. First, impulse response analysis of the beam is conducted to obtain the snapshot matrix of the nodal displacements. The DMD is then applied to extract the DMD modes and eigenvalues. The extracted DMD mode shapes can be used to form a reduction basis for the Galerkin projection of the equation of motion. The obtained ROM has been used to conduct the forced response calculation of the beam subjected to the piecewise linear boundary condition. The results obtained by the ROM agree well with that obtained by the full-order FEM model.
基于动态模态分解的分段线性系统模型阶降阶
提出了一种基于动态模态分解(DMD)的非线性系统数据驱动模型降阶策略。首先简要回顾了DMD的理论,并介绍了其在基于伽辽金投影的非线性系统模型降阶中的推广。该方法利用非线性系统的脉冲响应来获取状态变量的快照,并提取动态模式,然后将其用于投影基向量。然后,系统的运动方程可以投影到由基向量张成的子空间上,从而产生具有更小自由度(dof)的投影控制方程。将该方法应用于分段线性边界条件下悬臂梁有限元模型的降阶模型的建立。首先,对梁进行脉冲响应分析,得到节点位移的快照矩阵。然后应用DMD提取DMD模态和特征值。提取的DMD模态振型可用于形成运动方程伽辽金投影的约简基础。利用所得到的ROM进行了分段线性边界条件下梁的强迫响应计算。ROM计算结果与全阶有限元模型计算结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信