Role of Kernel Parameters in Performance Evaluation of SVM

Aditi Goel, S. Srivastava
{"title":"Role of Kernel Parameters in Performance Evaluation of SVM","authors":"Aditi Goel, S. Srivastava","doi":"10.1109/CICT.2016.40","DOIUrl":null,"url":null,"abstract":"Identifying performance of classifier is a challenging task. SVM plays an important role in classification. Here different kernel parameters are used as a tuning parameter to improve the classification accuracy. There are mainly four different types of kernels (Linear, Polynomial, RBF, and Sigmoid) that are popular in SVM classifier. The paper presents SVM classification results with above mentioned kernels on two different datasets (Diabetic Retinopathy dataset and Lung Cancer dataset). To evaluate the performance of the classifier we have used True positive rate, False Positive rate, Precision, Recall, F-measure and accuracy as performance measures of SVM. Finally we evaluated that SVM with linear kernel performs best among all.","PeriodicalId":118509,"journal":{"name":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT.2016.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Identifying performance of classifier is a challenging task. SVM plays an important role in classification. Here different kernel parameters are used as a tuning parameter to improve the classification accuracy. There are mainly four different types of kernels (Linear, Polynomial, RBF, and Sigmoid) that are popular in SVM classifier. The paper presents SVM classification results with above mentioned kernels on two different datasets (Diabetic Retinopathy dataset and Lung Cancer dataset). To evaluate the performance of the classifier we have used True positive rate, False Positive rate, Precision, Recall, F-measure and accuracy as performance measures of SVM. Finally we evaluated that SVM with linear kernel performs best among all.
核参数在SVM性能评价中的作用
识别分类器的性能是一项具有挑战性的任务。支持向量机在分类中起着重要的作用。这里使用不同的核参数作为调优参数来提高分类精度。在SVM分类器中,主要有四种不同类型的核(线性、多项式、RBF和Sigmoid)。本文给出了在两个不同的数据集(糖尿病视网膜病变数据集和肺癌数据集)上使用上述核的SVM分类结果。为了评估分类器的性能,我们使用了真阳性率、假阳性率、Precision、Recall、F-measure和准确率作为SVM的性能指标。最后对线性核支持向量机的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信