WO3 sensors array coupled with pattern recognition method for gases identification

Rabeb Faleh, M. Othman, S. Gomri, K. Aguir, A. Kachouri
{"title":"WO3 sensors array coupled with pattern recognition method for gases identification","authors":"Rabeb Faleh, M. Othman, S. Gomri, K. Aguir, A. Kachouri","doi":"10.1109/SSD.2016.7473744","DOIUrl":null,"url":null,"abstract":"This paper presents the performance of gas sensors as electronic nose coupled with pattern recognition method for gases identification. In fact, the implementation of the electronic nose in a characterization process is based on two fundamental phases: a learning phase and a phase of identification. That is why we need an accurate extraction method in order to obtain performant classification. In this study, we propose to extract transient parameters in a dynamic mode: derivate and integral. The performance of these features is validated by the analysis method: principal component analysis (PCA) and K nearest neighbors (KNN), which present 98, 74% rate classification.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the performance of gas sensors as electronic nose coupled with pattern recognition method for gases identification. In fact, the implementation of the electronic nose in a characterization process is based on two fundamental phases: a learning phase and a phase of identification. That is why we need an accurate extraction method in order to obtain performant classification. In this study, we propose to extract transient parameters in a dynamic mode: derivate and integral. The performance of these features is validated by the analysis method: principal component analysis (PCA) and K nearest neighbors (KNN), which present 98, 74% rate classification.
WO3传感器阵列与模式识别相结合的气体识别方法
本文介绍了电子鼻与模式识别相结合的气体传感器的气体识别性能。事实上,电子鼻在表征过程中的实现基于两个基本阶段:学习阶段和识别阶段。这就是为什么我们需要一种准确的提取方法来获得高性能的分类。在这项研究中,我们提出了一种动态模式提取瞬态参数:导数和积分。通过主成分分析(PCA)和K近邻分析(KNN)验证了这些特征的性能,它们的分类率为98.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信