Geometric intersection problems

M. Shamos, Dan Hoey
{"title":"Geometric intersection problems","authors":"M. Shamos, Dan Hoey","doi":"10.1109/SFCS.1976.16","DOIUrl":null,"url":null,"abstract":"We develop optimal algorithms for forming the intersection of geometric objects in the plane and apply them to such diverse problems as linear programming, hidden-line elimination, and wire layout. Given N line segments in the plane, finding all intersecting pairs requires O(N2) time. We give an O(N log N) algorithm to determine whether any two intersect and use it to detect whether two simple plane polygons intersect. We employ an O(N log N) algorithm for finding the common intersection of N half-planes to show that the Simplex method is not optimal. The emphasis throughout is on obtaining upper and lower bounds and relating these results to other problems in computational geometry.","PeriodicalId":434449,"journal":{"name":"17th Annual Symposium on Foundations of Computer Science (sfcs 1976)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"463","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th Annual Symposium on Foundations of Computer Science (sfcs 1976)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1976.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 463

Abstract

We develop optimal algorithms for forming the intersection of geometric objects in the plane and apply them to such diverse problems as linear programming, hidden-line elimination, and wire layout. Given N line segments in the plane, finding all intersecting pairs requires O(N2) time. We give an O(N log N) algorithm to determine whether any two intersect and use it to detect whether two simple plane polygons intersect. We employ an O(N log N) algorithm for finding the common intersection of N half-planes to show that the Simplex method is not optimal. The emphasis throughout is on obtaining upper and lower bounds and relating these results to other problems in computational geometry.
几何相交问题
我们开发了在平面上形成几何对象相交的最佳算法,并将其应用于诸如线性规划,隐线消除和导线布局等各种问题。给定平面上的N条线段,找到所有相交的线段对需要O(N2)时间。我们给出了一个O(N log N)算法来确定两个简单平面多边形是否相交,并用它来检测两个简单平面多边形是否相交。我们使用O(N log N)算法来寻找N个半平面的公共交点,以证明单纯形法不是最优的。整个过程的重点是得到上界和下界,并将这些结果与计算几何中的其他问题联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信