A constrained genetic approach for reconstructing Young's modulus of elastic objects from boundary displacement measurements

Yong Zhang, L. Hall, Dmitry Goldgof, S. Sarkar
{"title":"A constrained genetic approach for reconstructing Young's modulus of elastic objects from boundary displacement measurements","authors":"Yong Zhang, L. Hall, Dmitry Goldgof, S. Sarkar","doi":"10.1109/CEC.2002.1007062","DOIUrl":null,"url":null,"abstract":"This paper presents a constrained genetic approach (CGA) for reconstructing the Young's modulus of elastic objects. Qualitative a priori information is incorporated using a rank based scheme to constrain the admissible solutions. Balance between the fitness function (adhesion to the measurement data) and the penalty function (fidelity to a priori knowledge) is achieved by a stochastic sort algorithm. The over-smoothing of Young's modulus discontinuity is avoided without the need of computing a deterministic weight coefficient. The experiment on synthetic data indicates that the proposed method not only reconstructed reliable Young's modulus from noisy data, but also expedited the convergence process significantly.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1007062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a constrained genetic approach (CGA) for reconstructing the Young's modulus of elastic objects. Qualitative a priori information is incorporated using a rank based scheme to constrain the admissible solutions. Balance between the fitness function (adhesion to the measurement data) and the penalty function (fidelity to a priori knowledge) is achieved by a stochastic sort algorithm. The over-smoothing of Young's modulus discontinuity is avoided without the need of computing a deterministic weight coefficient. The experiment on synthetic data indicates that the proposed method not only reconstructed reliable Young's modulus from noisy data, but also expedited the convergence process significantly.
基于边界位移测量重建弹性物体杨氏模量的约束遗传方法
提出了一种基于约束遗传的弹性物体杨氏模量重建方法。定性先验信息采用基于秩的方案来约束可容许解。适应度函数(对测量数据的粘附性)和惩罚函数(对先验知识的保真度)之间的平衡是通过随机排序算法实现的。避免了杨氏模不连续的过度平滑,而不需要计算确定性的权重系数。在综合数据上的实验表明,该方法不仅能从噪声数据中重构出可靠的杨氏模量,而且显著加快了收敛过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信