Effect of UOE Forming Process on the Buckling Strains of Steel Pipes

M. Kashani, M. Mohareb, M. Asadi, Mathew Smith
{"title":"Effect of UOE Forming Process on the Buckling Strains of Steel Pipes","authors":"M. Kashani, M. Mohareb, M. Asadi, Mathew Smith","doi":"10.1115/IPC2018-78131","DOIUrl":null,"url":null,"abstract":"Oil and gas pipelines are commonly made of steel pipes manufactured through the UOE process. This process starts with a flat steel plate, bends it into a U shape, then bends it further to form an O shape, welds the seam, and then radially expands (E) the pipe. The process induces significant residual stresses in the pipe wall. Such stresses have conventionally been ignored in past finite element analyses aimed at quantifying buckling strain thresholds. The present study develops a numerical technique to investigate the effect of the residual stresses induced in the UOE process on the local buckling strains of pipes. Two types of nonlinear 3D FEA models are developed to quantify the buckling strains of pipes under imposed bending deformation. The first model starts with a flat plate, models the UOE process to capture the residual stresses, and then subjects the pipes to imposed bending deformation, the second model assumes the pipe is free from residual stresses. Comparisons are then performed between the buckling strains predicted by both models.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Oil and gas pipelines are commonly made of steel pipes manufactured through the UOE process. This process starts with a flat steel plate, bends it into a U shape, then bends it further to form an O shape, welds the seam, and then radially expands (E) the pipe. The process induces significant residual stresses in the pipe wall. Such stresses have conventionally been ignored in past finite element analyses aimed at quantifying buckling strain thresholds. The present study develops a numerical technique to investigate the effect of the residual stresses induced in the UOE process on the local buckling strains of pipes. Two types of nonlinear 3D FEA models are developed to quantify the buckling strains of pipes under imposed bending deformation. The first model starts with a flat plate, models the UOE process to capture the residual stresses, and then subjects the pipes to imposed bending deformation, the second model assumes the pipe is free from residual stresses. Comparisons are then performed between the buckling strains predicted by both models.
UOE成形工艺对钢管屈曲应变的影响
石油和天然气管道通常由通过UOE工艺制造的钢管制成。这个过程从一块扁钢板开始,将其弯曲成U形,然后进一步弯曲成O形,焊接焊缝,然后径向扩展(E)管道。这一过程在管壁产生了显著的残余应力。在过去旨在量化屈曲应变阈值的有限元分析中,这种应力通常被忽略。本文发展了一种数值方法来研究UOE过程中产生的残余应力对管道局部屈曲应变的影响。建立了两种非线性三维有限元模型,量化了管道在施加弯曲变形下的屈曲应变。第一个模型从一个平板开始,模拟UOE过程以捕获残余应力,然后使管道受到施加的弯曲变形,第二个模型假设管道没有残余应力。然后对两种模型预测的屈曲应变进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信