An unsupervised learning and fuzzy logic approach for software category identification and capacity planning

R. A. Clinkenbeard, X. Feng
{"title":"An unsupervised learning and fuzzy logic approach for software category identification and capacity planning","authors":"R. A. Clinkenbeard, X. Feng","doi":"10.1109/IJCNN.1992.227148","DOIUrl":null,"url":null,"abstract":"A hybrid unsupervised neural network and fuzzy logic approach is presented to achieve the primary goal of software categorization and feature interpretation. This method permits new software applications to be evaluated quickly for capacity planning and project management purposes. Fuzzy logic techniques were successfully applied to interpret the internal structure of the trained network, leading to an understanding of which application attributes most clearly distinguish the resulting categories. The resulting fuzzy membership functions can be used as inputs to subsequent analysis. These techniques can derive useful categories based on broad, external attributes of the software. This makes the technique useful to users of off-the-shelf software or to developers in the early stages of program specification. Experiments explicitly demonstrated the advantages of this method.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A hybrid unsupervised neural network and fuzzy logic approach is presented to achieve the primary goal of software categorization and feature interpretation. This method permits new software applications to be evaluated quickly for capacity planning and project management purposes. Fuzzy logic techniques were successfully applied to interpret the internal structure of the trained network, leading to an understanding of which application attributes most clearly distinguish the resulting categories. The resulting fuzzy membership functions can be used as inputs to subsequent analysis. These techniques can derive useful categories based on broad, external attributes of the software. This makes the technique useful to users of off-the-shelf software or to developers in the early stages of program specification. Experiments explicitly demonstrated the advantages of this method.<>
基于无监督学习和模糊逻辑的软件类别识别与容量规划
为了实现软件分类和特征解释的主要目标,提出了一种无监督神经网络和模糊逻辑的混合方法。这种方法允许为了容量规划和项目管理目的而快速评估新的软件应用程序。模糊逻辑技术成功地应用于解释训练网络的内部结构,从而了解哪些应用属性最清楚地区分结果类别。得到的模糊隶属函数可以作为后续分析的输入。这些技术可以根据软件的广泛的外部属性派生出有用的类别。这使得该技术对现成软件的用户或在程序规范的早期阶段的开发人员很有用。实验清楚地证明了这种方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信