CrossPriv

Harshita Diddee, Bhrigu Kansra
{"title":"CrossPriv","authors":"Harshita Diddee, Bhrigu Kansra","doi":"10.1145/3324884.3418911","DOIUrl":null,"url":null,"abstract":"The design and implementation of artificial intelligence driven software that keeps user data private is a complex yet necessary requirement in the current times. Developers must consider several ethical and legal challenges while developing services which relay massive amount of private information over a network grid which is susceptible to attack from malicious agents. In most cases, organizations adopt a traditional model training approach where publicly available data, or data specifically collated for the task is used to train the model. Specifically in the healthcare section, the operation of deep learning algorithms on limited local data may introduce a significant bias to the system and the accuracy of the model may not be representative due to lack of richly covariate training data. In this paper, we propose CrossPriv,a user privacy preservation model for cross-silo Federated Learning systems to dictate some preliminary norms of SaaS based collaborative software. We discuss the client and server side characteristics of the software deployed on each side. Further, We demonstrate the efficacy of the proposed model by training a convolution neural network on distributed data of two different silos to detect pneumonia using X-Rays whilst not sharing any raw data between the silos.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The design and implementation of artificial intelligence driven software that keeps user data private is a complex yet necessary requirement in the current times. Developers must consider several ethical and legal challenges while developing services which relay massive amount of private information over a network grid which is susceptible to attack from malicious agents. In most cases, organizations adopt a traditional model training approach where publicly available data, or data specifically collated for the task is used to train the model. Specifically in the healthcare section, the operation of deep learning algorithms on limited local data may introduce a significant bias to the system and the accuracy of the model may not be representative due to lack of richly covariate training data. In this paper, we propose CrossPriv,a user privacy preservation model for cross-silo Federated Learning systems to dictate some preliminary norms of SaaS based collaborative software. We discuss the client and server side characteristics of the software deployed on each side. Further, We demonstrate the efficacy of the proposed model by training a convolution neural network on distributed data of two different silos to detect pneumonia using X-Rays whilst not sharing any raw data between the silos.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信