Human Bone Localization in Ultrasound Image Using YOLOv3 CNN Architecture

R. Lazuardi, T. Karlita, E. M. Yuniarno, I. Purnama, M. Purnomo
{"title":"Human Bone Localization in Ultrasound Image Using YOLOv3 CNN Architecture","authors":"R. Lazuardi, T. Karlita, E. M. Yuniarno, I. Purnama, M. Purnomo","doi":"10.1109/CENIM48368.2019.8973372","DOIUrl":null,"url":null,"abstract":"Localization of human long bones in ultrasound images has quite complex challenges. This is due to a representation of the reflection of a sound wave emitted by a B-scan sensor. The ultrasound scan does not only display bone specimens, but also contains muscles, soft tissue, and other parts under the skin tissue Therefore we need a system that can automatically recognize bone specimens in ultrasound images. This study implements deep learning based learning systems using the convolutional neural network (CNN) method with YOLOv3. The training results from the network detector with IoU threshold 0.5 can recognize bone objects in mAP@50, mAP@75 and mAP@50:95 with values of 99.98, 97.68 and 85.67 respectively. And for the results of training the network detector with IoU threshold 0.75 can recognize bone objects in mAP@50, mAP@75 and mAP@50:95 with values of 99.96, 97.46 and 86.35 respectively.","PeriodicalId":106778,"journal":{"name":"2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM48368.2019.8973372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Localization of human long bones in ultrasound images has quite complex challenges. This is due to a representation of the reflection of a sound wave emitted by a B-scan sensor. The ultrasound scan does not only display bone specimens, but also contains muscles, soft tissue, and other parts under the skin tissue Therefore we need a system that can automatically recognize bone specimens in ultrasound images. This study implements deep learning based learning systems using the convolutional neural network (CNN) method with YOLOv3. The training results from the network detector with IoU threshold 0.5 can recognize bone objects in mAP@50, mAP@75 and mAP@50:95 with values of 99.98, 97.68 and 85.67 respectively. And for the results of training the network detector with IoU threshold 0.75 can recognize bone objects in mAP@50, mAP@75 and mAP@50:95 with values of 99.96, 97.46 and 86.35 respectively.
基于YOLOv3 CNN架构的超声图像人骨定位
人体长骨的超声图像定位具有相当复杂的挑战。这是由于b扫描传感器发出的声波反射的表示。超声扫描不仅显示骨骼标本,还包含肌肉、软组织和皮肤组织下的其他部分,因此我们需要一种能够在超声图像中自动识别骨骼标本的系统。本研究使用卷积神经网络(CNN)方法与YOLOv3实现了基于深度学习的学习系统。IoU阈值为0.5的网络检测器的训练结果可以识别出mAP@50、mAP@75和mAP@50:95中的骨目标,分别为99.98、97.68和85.67。对于IoU阈值为0.75的网络检测器的训练结果,可以识别出mAP@50、mAP@75和mAP@50:95中的骨目标,分别为99.96、97.46和86.35。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信