Ma Xianfeng, Gen Li, X. Zheng, Xiaozhong Wang, Zhongcheng Wang, Yulong Ji
{"title":"Thermal Property Enhancement of Liquid Metal Used As Thermal Interface Material by Mixing Magnetic Particles","authors":"Ma Xianfeng, Gen Li, X. Zheng, Xiaozhong Wang, Zhongcheng Wang, Yulong Ji","doi":"10.1115/mnhmt2019-4155","DOIUrl":null,"url":null,"abstract":"\n The usage of low melting temperature alloys (LMAs) as thermal interface materials (TIMs) has attracted more and more attention for their high thermal conductivity. However, the wettability between liquid metal and ordinary metal surface was poor, which results in high thermal interface resistance. The thermal and physical properties of LMAs can be modified by adding nano or micro particles. In this study, the room temperature liquid metal (gallium, indium and tin eutectic) was used as TIM and its properties were modified by mixing magnetic nickel particles. Further, the effects of magnetic field application on the thermal performance of modified LMAs were evaluated by steady state method with specially designed sample holder. Results showed that the thermal conductivity of liquid metal mixed with nickel particle increased from 27.33 W/(m · K) to 33.33 W/(m · K) with the application of magnetic field.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The usage of low melting temperature alloys (LMAs) as thermal interface materials (TIMs) has attracted more and more attention for their high thermal conductivity. However, the wettability between liquid metal and ordinary metal surface was poor, which results in high thermal interface resistance. The thermal and physical properties of LMAs can be modified by adding nano or micro particles. In this study, the room temperature liquid metal (gallium, indium and tin eutectic) was used as TIM and its properties were modified by mixing magnetic nickel particles. Further, the effects of magnetic field application on the thermal performance of modified LMAs were evaluated by steady state method with specially designed sample holder. Results showed that the thermal conductivity of liquid metal mixed with nickel particle increased from 27.33 W/(m · K) to 33.33 W/(m · K) with the application of magnetic field.