Constraint satisfaction model for enhancement of evidence in recognition of consonant-vowel utterances

S. Gangashetty, C. Sekhar, B. Yegnanarayana
{"title":"Constraint satisfaction model for enhancement of evidence in recognition of consonant-vowel utterances","authors":"S. Gangashetty, C. Sekhar, B. Yegnanarayana","doi":"10.1109/ICASSP.2003.1202476","DOIUrl":null,"url":null,"abstract":"We address the issues in recognition of a large number of subword units of speech with high confusability among several units. Evidence available from the classification models trained with a limited number of training examples may not be strong to correctly recognize the subword units. We present a constraint satisfaction neural network model that can be used to enhance the evidence for a particular unit with the supporting evidence available for a subset of units confusable with that unit. We demonstrate the enhancement of evidence by the proposed model in recognition of utterances of 145 consonant-vowel units.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1202476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We address the issues in recognition of a large number of subword units of speech with high confusability among several units. Evidence available from the classification models trained with a limited number of training examples may not be strong to correctly recognize the subword units. We present a constraint satisfaction neural network model that can be used to enhance the evidence for a particular unit with the supporting evidence available for a subset of units confusable with that unit. We demonstrate the enhancement of evidence by the proposed model in recognition of utterances of 145 consonant-vowel units.
增强声母语音识别证据的约束满足模型
我们解决了识别大量具有高混淆性的语音子词单位的问题。从有限数量的训练样本训练的分类模型中获得的证据可能不足以正确识别子词单位。我们提出了一个约束满足神经网络模型,该模型可用于增强特定单元的证据,并为可与该单元混淆的单元子集提供支持证据。我们通过提出的模型在识别145个辅音-元音单位的话语中证明了证据的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信