{"title":"Deep feature learning for pulmonary nodule classification in a lung CT","authors":"Bum-Chae Kim, Y. Sung, Heung-Il Suk","doi":"10.1109/IWW-BCI.2016.7457462","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.