On-road Trajectory Planning with Spatio-temporal RRT* and Always-feasible Quadratic Program

Bai Li, Qi Kong, Youmin Zhang, Zhijiang Shao, Yumeng Wang, Xiaoyan Peng, Daxun Yan
{"title":"On-road Trajectory Planning with Spatio-temporal RRT* and Always-feasible Quadratic Program","authors":"Bai Li, Qi Kong, Youmin Zhang, Zhijiang Shao, Yumeng Wang, Xiaoyan Peng, Daxun Yan","doi":"10.1109/CASE48305.2020.9217044","DOIUrl":null,"url":null,"abstract":"On-road trajectory planning is a critical module in an autonomous driving system. Instead of using a path-velocity decomposition or longitudinal-lateral decomposition strategy, this work aims to find a trajectory directly. We adopt a sampleand-search planner to get a coarse trajectory and then polish it via numerical optimization. Among the predominant sampleand-search planners, most of the sampling operations are not flexible, which inevitably lead to a solution failure if the sampling density is low, and suffer from the curse of dimensionality if the sampling density is set high. This work proposes a modified RRT* for trajectory search, aiming to promote the sampling flexibility and to get rid of the search randomness. A quadratic program (QP) based smoother is proposed to refine the coarse trajectory. Herein, the scale of the QP problem is fixed and tractable, and the feasibility of the QP problem is always guaranteed.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9217044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

On-road trajectory planning is a critical module in an autonomous driving system. Instead of using a path-velocity decomposition or longitudinal-lateral decomposition strategy, this work aims to find a trajectory directly. We adopt a sampleand-search planner to get a coarse trajectory and then polish it via numerical optimization. Among the predominant sampleand-search planners, most of the sampling operations are not flexible, which inevitably lead to a solution failure if the sampling density is low, and suffer from the curse of dimensionality if the sampling density is set high. This work proposes a modified RRT* for trajectory search, aiming to promote the sampling flexibility and to get rid of the search randomness. A quadratic program (QP) based smoother is proposed to refine the coarse trajectory. Herein, the scale of the QP problem is fixed and tractable, and the feasibility of the QP problem is always guaranteed.
基于时空RRT*和始终可行二次规划的道路轨迹规划
道路轨迹规划是自动驾驶系统的关键模块。这项工作的目的是直接找到一个轨迹,而不是使用路径-速度分解或纵向-横向分解策略。我们采用样本搜索规划器得到粗轨迹,然后通过数值优化对其进行优化。在主流的抽样搜索计划中,大多数抽样操作都不灵活,当抽样密度较低时,不可避免地导致求解失败,而当抽样密度过高时,又会受到维数诅咒的影响。本文提出了一种改进的RRT*用于轨迹搜索,旨在提高采样的灵活性,消除搜索的随机性。提出了一种基于二次规划(QP)的平滑器来改进粗轨迹。其中,QP问题的规模是固定的、可处理的,并且始终保证QP问题的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信