Observer-based Optimal Adaptive Control for Multi-motor Driving Servo System

Shuangyi Hu, X. Ren
{"title":"Observer-based Optimal Adaptive Control for Multi-motor Driving Servo System","authors":"Shuangyi Hu, X. Ren","doi":"10.1109/DDCLS49620.2020.9275157","DOIUrl":null,"url":null,"abstract":"In this paper, an improved optimal sliding mode control strategy is proposed for multi-motor driving servo system. Some states of multi-motor drive system are not measurable and there exists unknown nonlinearity. To solve this problem, the disturbance observer and extended state observer are both applied to estimate the unknown states and nonlinearity. Based on optimal control theory, the optimal sliding surface is selected to guarantee the optimal dynamic performance of the sliding mode of the system. The effectiveness of designed control methods is illustrated by simulation results.","PeriodicalId":420469,"journal":{"name":"2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS49620.2020.9275157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an improved optimal sliding mode control strategy is proposed for multi-motor driving servo system. Some states of multi-motor drive system are not measurable and there exists unknown nonlinearity. To solve this problem, the disturbance observer and extended state observer are both applied to estimate the unknown states and nonlinearity. Based on optimal control theory, the optimal sliding surface is selected to guarantee the optimal dynamic performance of the sliding mode of the system. The effectiveness of designed control methods is illustrated by simulation results.
基于观测器的多电机驱动伺服系统最优自适应控制
针对多电机驱动伺服系统,提出了一种改进的最优滑模控制策略。多电机驱动系统的一些状态是不可测量的,存在未知的非线性。为了解决这一问题,采用扰动观测器和扩展状态观测器来估计系统的未知状态和非线性。基于最优控制理论,选取最优滑动面,保证系统滑模的最优动态性能。仿真结果验证了所设计控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信