Particle Swarm Optimization based design of disturbance rejection PID controllers for time delay systems

K. Khandani, A. Jalali, M. Alipoor
{"title":"Particle Swarm Optimization based design of disturbance rejection PID controllers for time delay systems","authors":"K. Khandani, A. Jalali, M. Alipoor","doi":"10.1109/ICICISYS.2009.5358043","DOIUrl":null,"url":null,"abstract":"In this paper a new method to design PID controllers for time delay systems is presented. Particle Swarm Optimization (PSO) technique is used to obtain optimal parameters of a two-degree-of-freedom (2-DOF) PID controller. Set point tracking is an objective that is to be achieved in presence of disturbance. At first a PD controller as a disturbance rejection controller is designed, and then in the outer loop the main PID controller for tracking the input signal is placed. Since disturbance rejection and set point tracking should be satisfied alongside each other, some considerations are taken into account to choose the most appropriate controller. Using this method, a better response can be achieved in comparison with genetic algorithm.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5358043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper a new method to design PID controllers for time delay systems is presented. Particle Swarm Optimization (PSO) technique is used to obtain optimal parameters of a two-degree-of-freedom (2-DOF) PID controller. Set point tracking is an objective that is to be achieved in presence of disturbance. At first a PD controller as a disturbance rejection controller is designed, and then in the outer loop the main PID controller for tracking the input signal is placed. Since disturbance rejection and set point tracking should be satisfied alongside each other, some considerations are taken into account to choose the most appropriate controller. Using this method, a better response can be achieved in comparison with genetic algorithm.
基于粒子群算法的时滞系统抗扰PID控制器设计
本文提出了一种设计时滞系统PID控制器的新方法。采用粒子群算法求解二自由度PID控制器的最优参数。设定点跟踪是在存在干扰的情况下实现的目标。首先设计了PD控制器作为抗扰控制器,然后在外环设置了用于跟踪输入信号的主PID控制器。由于干扰抑制和设定点跟踪需要同时满足,因此在选择最合适的控制器时需要考虑一些因素。与遗传算法相比,该方法可以获得更好的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信