Vehicle localization by sensor fusion of LRS measurement and odometry information based on moving horizon estimation

Kazuki Kimura, Yutaro Hiromachi, K. Nonaka, K. Sekiguchi
{"title":"Vehicle localization by sensor fusion of LRS measurement and odometry information based on moving horizon estimation","authors":"Kazuki Kimura, Yutaro Hiromachi, K. Nonaka, K. Sekiguchi","doi":"10.1109/CCA.2014.6981509","DOIUrl":null,"url":null,"abstract":"In this study, we propose a localization method based on the fusion of the laser range sensor (LRS) measurements and the odometry information of a vehicle using moving horizon estimation (MHE). LRS measurement includes outliers and suffers from the intermittent observation; alleviation of their effect is required in order to localize a vehicle position with high accuracy. Proposed localization method merges multi-sampling data by exploiting MHE, which greatly reduces the effect of outliers and intermittent observation on localization using the data of other sampling. We show the efficacy of proposed localization by numerical simulations and experiments.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this study, we propose a localization method based on the fusion of the laser range sensor (LRS) measurements and the odometry information of a vehicle using moving horizon estimation (MHE). LRS measurement includes outliers and suffers from the intermittent observation; alleviation of their effect is required in order to localize a vehicle position with high accuracy. Proposed localization method merges multi-sampling data by exploiting MHE, which greatly reduces the effect of outliers and intermittent observation on localization using the data of other sampling. We show the efficacy of proposed localization by numerical simulations and experiments.
基于运动地平线估计的LRS测量与里程计信息融合的车辆定位
在这项研究中,我们提出了一种基于激光距离传感器(LRS)测量结果和基于移动地平线估计(MHE)的车辆里程信息融合的定位方法。LRS测量包含异常值,且存在间歇性观测;为了高精度地定位车辆位置,需要减轻它们的影响。所提出的定位方法利用多采样数据融合,极大地降低了异常值和间歇观测对利用其他采样数据进行定位的影响。我们通过数值模拟和实验证明了所提出的定位方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信