Authentication of Underwater Acoustic Transmissions via Machine Learning Techniques

L. Bragagnolo, F. Ardizzon, N. Laurenti, P. Casari, R. Diamant, S. Tomasin
{"title":"Authentication of Underwater Acoustic Transmissions via Machine Learning Techniques","authors":"L. Bragagnolo, F. Ardizzon, N. Laurenti, P. Casari, R. Diamant, S. Tomasin","doi":"10.1109/comcas52219.2021.9629031","DOIUrl":null,"url":null,"abstract":"We consider the problem of discriminating a legitimate transmitter from an impersonating attacker in an underwater acoustic network under a physical layer security framework. In particular, we utilize features of the underwater acoustic channel such as the number of taps, the delay spread, and the received power. In the absence of a reliable statistical model of the underwater channel, we turn to a machine learning technique to extract the feature statistics and utilize them to distinguish between legitimate and fake transmissions. Numerical results show how, using only four channel features as input of either a neural network or an autoencoder, we achieve a good trade off between false alarm and detection rates. Moreover, cooperative techniques fusing soft decision statistics from multiple trusted nodes further outperform the discrimination capability of each separate node. Data from a sea trial carried out in Israeli eastern Mediterranean waters demonstrate the applicability of our approach.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider the problem of discriminating a legitimate transmitter from an impersonating attacker in an underwater acoustic network under a physical layer security framework. In particular, we utilize features of the underwater acoustic channel such as the number of taps, the delay spread, and the received power. In the absence of a reliable statistical model of the underwater channel, we turn to a machine learning technique to extract the feature statistics and utilize them to distinguish between legitimate and fake transmissions. Numerical results show how, using only four channel features as input of either a neural network or an autoencoder, we achieve a good trade off between false alarm and detection rates. Moreover, cooperative techniques fusing soft decision statistics from multiple trusted nodes further outperform the discrimination capability of each separate node. Data from a sea trial carried out in Israeli eastern Mediterranean waters demonstrate the applicability of our approach.
基于机器学习技术的水声传输认证
我们考虑了在物理层安全框架下水声网络中识别合法发射机和冒充攻击者的问题。特别地,我们利用了水声信道的特征,如抽头数量、延迟扩展和接收功率。在缺乏可靠的水下信道统计模型的情况下,我们转向机器学习技术来提取特征统计数据,并利用它们来区分合法和虚假的传输。数值结果表明,仅使用四个通道特征作为神经网络或自编码器的输入,我们如何在虚警和检测率之间实现良好的权衡。此外,融合来自多个可信节点的软决策统计的协作技术进一步优于每个独立节点的识别能力。在以色列地中海东部水域进行的海上试验的数据表明,我们的办法是适用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信