Deep Learning Classification of Large-Scale Point Clouds: A Case Study on Cuneiform Tablets

Frederik Hagelskjær
{"title":"Deep Learning Classification of Large-Scale Point Clouds: A Case Study on Cuneiform Tablets","authors":"Frederik Hagelskjær","doi":"10.1109/ICIP46576.2022.9898032","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel network architecture for the classification of large-scale point clouds. The network is used to classify metadata from cuneiform tablets. As more than half a million tablets remain unprocessed, this can help create an overview of the tablets. The network is tested on a comparison dataset and obtains state-of-the-art performance. We also introduce new metadata classification tasks on which the network shows promising results. Finally, we introduce the novel Maximum Attention visualization, demonstrating that the trained network focuses on the intended features. Code available at https://github.com/fhagelskjaer/dlc-cuneiform","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a novel network architecture for the classification of large-scale point clouds. The network is used to classify metadata from cuneiform tablets. As more than half a million tablets remain unprocessed, this can help create an overview of the tablets. The network is tested on a comparison dataset and obtains state-of-the-art performance. We also introduce new metadata classification tasks on which the network shows promising results. Finally, we introduce the novel Maximum Attention visualization, demonstrating that the trained network focuses on the intended features. Code available at https://github.com/fhagelskjaer/dlc-cuneiform
大规模点云的深度学习分类——以楔形文字片为例
本文介绍了一种用于大规模点云分类的新型网络结构。该网络用于对楔形文字片的元数据进行分类。由于超过50万的平板电脑仍未加工,这可以帮助创建一个平板电脑的概述。该网络在比较数据集上进行了测试,并获得了最先进的性能。我们还引入了新的元数据分类任务,该网络在这些任务上显示了令人鼓舞的结果。最后,我们引入了新颖的最大注意力可视化,证明了训练后的网络专注于预期的特征。代码可在https://github.com/fhagelskjaer/dlc-cuneiform获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信