Reduced-complexity RLS estimation for shallow-water channels

M. Kocic, D. Brady, S. Merriam
{"title":"Reduced-complexity RLS estimation for shallow-water channels","authors":"M. Kocic, D. Brady, S. Merriam","doi":"10.1109/AUV.1994.518621","DOIUrl":null,"url":null,"abstract":"An adjustable complexity, recursive least squares (RLS) estimation algorithm is presented, which is suitable for adaptive equalization and source localization in shallow-water acoustic channels. The algorithm adjusts its computational complexity, measured in FLOPS per update, in a decreasing fashion with the relative signal strength, by ignoring \"insignificant\" dimensions of the channel. The algorithm reverts to the well-known fast RLS algorithms when the signal quality is weak, and may be combined with reduced period updating techniques. Examples illustrate computational savings in excess of one order of magnitude, permitting a tripling of the maximum data rate through these complexity-limited communication channels.","PeriodicalId":231222,"journal":{"name":"Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV'94)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.1994.518621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An adjustable complexity, recursive least squares (RLS) estimation algorithm is presented, which is suitable for adaptive equalization and source localization in shallow-water acoustic channels. The algorithm adjusts its computational complexity, measured in FLOPS per update, in a decreasing fashion with the relative signal strength, by ignoring "insignificant" dimensions of the channel. The algorithm reverts to the well-known fast RLS algorithms when the signal quality is weak, and may be combined with reduced period updating techniques. Examples illustrate computational savings in excess of one order of magnitude, permitting a tripling of the maximum data rate through these complexity-limited communication channels.
浅水航道的低复杂度RLS估计
提出了一种复杂度可调的递推最小二乘(RLS)估计算法,该算法适用于浅水声道自适应均衡和声源定位。该算法通过忽略信道的“无关紧要”维度,以相对信号强度递减的方式调整其计算复杂度(以每次更新的FLOPS计算)。该算法在信号质量较弱时恢复到众所周知的快速RLS算法,并可与降周期更新技术相结合。示例说明了超过一个数量级的计算节省,允许通过这些复杂性有限的通信通道将最大数据速率提高三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信