Tengping Jiang, Yongjun Wang, Shuaibing Tao, Yunli Li, Shan Liu
{"title":"Integrating Active Learning and Contextually Guide for Semantic Labeling of LiDAR Point Cloud","authors":"Tengping Jiang, Yongjun Wang, Shuaibing Tao, Yunli Li, Shan Liu","doi":"10.1109/PRRS.2018.8486166","DOIUrl":null,"url":null,"abstract":"To alleviate the difficulties in obtaining training data sets of 3D point clouds, an active learning (AL) framework is proposed to iteratively select a small portion of unlabeled points to query their labels, and creates a minimum manually-annotated training set. To handle the biased sampling problem caused by category imbalance and local similarities, a neighbor-consistency prior is used to conduct an unbiased sampling for selecting the value samples into the training set. Additionally, to reduce the number of categories used in labeling, a higher-order MRF containing a regional label cost term, is exploited to refine the labeling results.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
To alleviate the difficulties in obtaining training data sets of 3D point clouds, an active learning (AL) framework is proposed to iteratively select a small portion of unlabeled points to query their labels, and creates a minimum manually-annotated training set. To handle the biased sampling problem caused by category imbalance and local similarities, a neighbor-consistency prior is used to conduct an unbiased sampling for selecting the value samples into the training set. Additionally, to reduce the number of categories used in labeling, a higher-order MRF containing a regional label cost term, is exploited to refine the labeling results.