Graph Neural Networks for Adapting Off-the-shelf General Domain Language Models to Low-Resource Specialised Domains

Mérième Bouhandi, E. Morin, Thierry Hamon
{"title":"Graph Neural Networks for Adapting Off-the-shelf General Domain Language Models to Low-Resource Specialised Domains","authors":"Mérième Bouhandi, E. Morin, Thierry Hamon","doi":"10.18653/v1/2022.dlg4nlp-1.5","DOIUrl":null,"url":null,"abstract":"Language models encode linguistic proprieties and are used as input for more specific models. Using their word representations as-is for specialised and low-resource domains might be less efficient. Methods of adapting them exist, but these models often overlook global information about how words, terms, and concepts relate to each other in a corpus due to their strong reliance on attention. We consider that global information can influence the results of the downstream tasks, and combination with contextual information is performed using graph convolution networks or GCN built on vocabulary graphs. By outperforming baselines, we show that this architecture is profitable for domain-specific tasks.","PeriodicalId":367475,"journal":{"name":"Proceedings of the 2nd Workshop on Deep Learning on Graphs for Natural Language Processing (DLG4NLP 2022)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Deep Learning on Graphs for Natural Language Processing (DLG4NLP 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.dlg4nlp-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Language models encode linguistic proprieties and are used as input for more specific models. Using their word representations as-is for specialised and low-resource domains might be less efficient. Methods of adapting them exist, but these models often overlook global information about how words, terms, and concepts relate to each other in a corpus due to their strong reliance on attention. We consider that global information can influence the results of the downstream tasks, and combination with contextual information is performed using graph convolution networks or GCN built on vocabulary graphs. By outperforming baselines, we show that this architecture is profitable for domain-specific tasks.
基于图神经网络的通用领域语言模型在低资源特殊领域中的应用
语言模型对语言特性进行编码,并用作更具体模型的输入。对于专门的和低资源的领域,使用它们的单词表示可能效率较低。虽然存在调整它们的方法,但这些模型往往忽略了语料库中单词、术语和概念如何相互关联的全局信息,因为它们强烈依赖于注意力。我们考虑到全局信息可以影响下游任务的结果,并使用基于词汇图的图卷积网络或GCN与上下文信息进行组合。通过超越基线,我们表明该体系结构对于特定于领域的任务是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信