Texture descriptors based on co-occurrence matrices

Calvin C. Gotlieb, Herbert E. Kreyszig
{"title":"Texture descriptors based on co-occurrence matrices","authors":"Calvin C. Gotlieb,&nbsp;Herbert E. Kreyszig","doi":"10.1016/S0734-189X(05)80063-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the problem of texture classification using statistical descriptors based on the co-occurrence matrices. A major part of the paper is dedicated to the derivation of a general model for analysis and interpretation of experimental results in texture analysis when individual and groups of classifiers are being used, and a technique for evaluating their performance. Using six representative classifiers; that is, <em>second angular moment f1, contrast f2, inverse difference moment f5, entropy f9</em>, and <em>information measures of correlation I and II, f12 and f13</em>, we give a systematic study of the discrimination power of all 63 combination of these classifiers on 13 samples of Brodatz textures. The conclusion that can be drawn from our study is that it is useful to combine classifiers up to a certain order. Here it turned out that groups of four classifiers are optimal.</p></div>","PeriodicalId":100319,"journal":{"name":"Computer Vision, Graphics, and Image Processing","volume":"51 1","pages":"Pages 70-86"},"PeriodicalIF":0.0000,"publicationDate":"1990-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0734-189X(05)80063-5","citationCount":"299","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision, Graphics, and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734189X05800635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 299

Abstract

This paper focuses on the problem of texture classification using statistical descriptors based on the co-occurrence matrices. A major part of the paper is dedicated to the derivation of a general model for analysis and interpretation of experimental results in texture analysis when individual and groups of classifiers are being used, and a technique for evaluating their performance. Using six representative classifiers; that is, second angular moment f1, contrast f2, inverse difference moment f5, entropy f9, and information measures of correlation I and II, f12 and f13, we give a systematic study of the discrimination power of all 63 combination of these classifiers on 13 samples of Brodatz textures. The conclusion that can be drawn from our study is that it is useful to combine classifiers up to a certain order. Here it turned out that groups of four classifiers are optimal.

基于共现矩阵的纹理描述符
研究了基于共现矩阵的统计描述子的纹理分类问题。本文的主要部分致力于推导一个通用模型,用于在使用单个和组分类器时分析和解释纹理分析中的实验结果,以及评估其性能的技术。使用六个代表性分类器;即二阶角矩f1、对比度f2、逆差矩f5、熵f9以及相关系数I和II、f12和f13的信息测度,我们系统地研究了这63个分类器组合在13个Brodatz纹理样本上的识别能力。从我们的研究中可以得出的结论是,将分类器组合到一定的顺序是有用的。结果表明,四组分类器是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信