Neuropathic Pain Scale Based Clustering for Subgroup Analysis in Pain Medicine

Guangzhi Qu, Hui Wu, I. Sethi, C. Hartrick
{"title":"Neuropathic Pain Scale Based Clustering for Subgroup Analysis in Pain Medicine","authors":"Guangzhi Qu, Hui Wu, I. Sethi, C. Hartrick","doi":"10.1109/ICMLA.2010.51","DOIUrl":null,"url":null,"abstract":"Neuropathic pain (NeuP) is often more difficult to treat than other types of chronic pain. The ability to predict outcomes in NeuP, such as response to specific therapies and return to work, would have tremendous value to both patients and society. In this work, we propose an adaptive clustering algorithm using the Neuropathic Pain Scale (NPS) to develop a set of standard patient templates. These templates may be useful in studying treatment response in NeuP. The approach is evaluated on 108 subjects' baseline data and results demonstrate the efficacy of utilizing neuropathic pain scale (NPS) metrics and our proposed method.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuropathic pain (NeuP) is often more difficult to treat than other types of chronic pain. The ability to predict outcomes in NeuP, such as response to specific therapies and return to work, would have tremendous value to both patients and society. In this work, we propose an adaptive clustering algorithm using the Neuropathic Pain Scale (NPS) to develop a set of standard patient templates. These templates may be useful in studying treatment response in NeuP. The approach is evaluated on 108 subjects' baseline data and results demonstrate the efficacy of utilizing neuropathic pain scale (NPS) metrics and our proposed method.
基于聚类的神经性疼痛量表在疼痛医学中的亚组分析
神经性疼痛(NeuP)通常比其他类型的慢性疼痛更难治疗。能够预测NeuP的结果,比如对特定治疗的反应和重返工作岗位,对患者和社会都有巨大的价值。在这项工作中,我们提出了一种使用神经性疼痛量表(NPS)的自适应聚类算法来开发一套标准患者模板。这些模板可能有助于研究NeuP的治疗反应。对108名受试者的基线数据进行了评估,结果证明了使用神经性疼痛量表(NPS)指标和我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信