J. Bickford, S. George, J. Manobianco, M. Adams, D. Manobianco
{"title":"Large scale deployment and operation of distributed sensor assets optimized for robust Mars exploration","authors":"J. Bickford, S. George, J. Manobianco, M. Adams, D. Manobianco","doi":"10.1109/EH.2005.33","DOIUrl":null,"url":null,"abstract":"The large scale dispersal of distributed sensor arrays across planetary surfaces has been proposed by several groups for the exploration of Mars. We survey a number of these concepts and discuss their intrinsic advantages as well as technical challenges relative to more traditional exploration modalities. Specifically, distributed sensors working in conjunction with traditional surface vehicles enable critical phenomena to be measured in previously inaccessible terrain over temporal and spatial scales not obtainable otherwise. We discuss how this strategy can be integrated into an overall science campaign and address several key issues in regards to returning the acquired data. Dispersion and data extraction studies performed for the global environmental micro sensors (GEMS) project will be presented in the context of Mars exploration and the search for life. The modeling results provide insight into optimum strategies for distributing probes and then extracting measured data either via an ad hoc network or direct exfiltration to an orbital asset.","PeriodicalId":448208,"journal":{"name":"2005 NASA/DoD Conference on Evolvable Hardware (EH'05)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 NASA/DoD Conference on Evolvable Hardware (EH'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2005.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The large scale dispersal of distributed sensor arrays across planetary surfaces has been proposed by several groups for the exploration of Mars. We survey a number of these concepts and discuss their intrinsic advantages as well as technical challenges relative to more traditional exploration modalities. Specifically, distributed sensors working in conjunction with traditional surface vehicles enable critical phenomena to be measured in previously inaccessible terrain over temporal and spatial scales not obtainable otherwise. We discuss how this strategy can be integrated into an overall science campaign and address several key issues in regards to returning the acquired data. Dispersion and data extraction studies performed for the global environmental micro sensors (GEMS) project will be presented in the context of Mars exploration and the search for life. The modeling results provide insight into optimum strategies for distributing probes and then extracting measured data either via an ad hoc network or direct exfiltration to an orbital asset.