{"title":"Automatic Facial Expression Recognition System Using Shape-Information-Matrix (SIM): An Expression Specific Approach","authors":"Avishek Nandi, P. Dutta, Md. Nasir","doi":"10.4018/ijncr.2020100103","DOIUrl":null,"url":null,"abstract":"Automatic recognition of facial expressions and modeling of human expressions are very essential in the field of affective computing. The authors have introduced a novel geometric and texture-based method to extract the shapio-geometric features from an image computed by landmarking the geometric locations of facial components using the active appearance model (AAM). Expression-specific analysis of facial landmark points is carried out to select a set of landmark points for each expression to identify features for each specific expression. The shape information matrix (SIM) is constructed the set salient landmark points assign to an expression. Finally, the histogram-oriented gradients (HoG) of SIM are computed which is used for classification with multi-layer perceptron (MLP). The proposed method is tested and validated on four well-known benchmark databases, which are CK+, JAFFE, MMI, and MUG. The proposed system achieved 98.5%, 97.6%, 96.4%, and 97.0% accuracy in CK+, JAFFE, MMI, and MUG database, respectively.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2020100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic recognition of facial expressions and modeling of human expressions are very essential in the field of affective computing. The authors have introduced a novel geometric and texture-based method to extract the shapio-geometric features from an image computed by landmarking the geometric locations of facial components using the active appearance model (AAM). Expression-specific analysis of facial landmark points is carried out to select a set of landmark points for each expression to identify features for each specific expression. The shape information matrix (SIM) is constructed the set salient landmark points assign to an expression. Finally, the histogram-oriented gradients (HoG) of SIM are computed which is used for classification with multi-layer perceptron (MLP). The proposed method is tested and validated on four well-known benchmark databases, which are CK+, JAFFE, MMI, and MUG. The proposed system achieved 98.5%, 97.6%, 96.4%, and 97.0% accuracy in CK+, JAFFE, MMI, and MUG database, respectively.