{"title":"User intention understanding from scratch","authors":"Ziheng Wang, Yonggang Qi, Jun Liu, Zhanyu Ma","doi":"10.1109/SPLIM.2016.7528398","DOIUrl":null,"url":null,"abstract":"User intention understanding from text is an important task in NLP. In this paper, we study the problem of phone-changing intention prediction. And we propose a novel feature extraction method, which selects the most representative intention feature, to represent user's intention from text scratch. Then we adopt a supervised learning approach, that is to train SVM classifier, for intention prediction. In addition, we propose a novel phone-changing intention dataset that the text scratches and their corresponding labels are collected from real network environment. The experimental results validate the effectiveness of our proposed approach.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
User intention understanding from text is an important task in NLP. In this paper, we study the problem of phone-changing intention prediction. And we propose a novel feature extraction method, which selects the most representative intention feature, to represent user's intention from text scratch. Then we adopt a supervised learning approach, that is to train SVM classifier, for intention prediction. In addition, we propose a novel phone-changing intention dataset that the text scratches and their corresponding labels are collected from real network environment. The experimental results validate the effectiveness of our proposed approach.