R. Venkatesan, Jeffrey A. Davis, K. Bowman, J. Meindl
{"title":"Minimum power and area n-tier multilevel interconnect architectures using optimal repeater insertion","authors":"R. Venkatesan, Jeffrey A. Davis, K. Bowman, J. Meindl","doi":"10.1145/344166.344568","DOIUrl":null,"url":null,"abstract":"Minimum power CMOS ASIC macrocells are designed by minimizing the macrocell area using a new methodology to optimally insert repeaters for n-tier multilevel interconnect architectures. The minimum macrocell area and power dissipation are projected for the 100, 70 and 50 nm technology generations and compared with a n-tier design without using repeaters. Repeater insertion and a novel interconnect geometry scaling technique decrease the power dissipation by 58-68% corresponding to a macrocell area reduction of 70-78% for the global clock frequency designs of these three technology generations.","PeriodicalId":188020,"journal":{"name":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344166.344568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Minimum power CMOS ASIC macrocells are designed by minimizing the macrocell area using a new methodology to optimally insert repeaters for n-tier multilevel interconnect architectures. The minimum macrocell area and power dissipation are projected for the 100, 70 and 50 nm technology generations and compared with a n-tier design without using repeaters. Repeater insertion and a novel interconnect geometry scaling technique decrease the power dissipation by 58-68% corresponding to a macrocell area reduction of 70-78% for the global clock frequency designs of these three technology generations.