Estimating Parameters of Structural Models Using Neural Networks

Y. Wei, Zhenling Jiang
{"title":"Estimating Parameters of Structural Models Using Neural Networks","authors":"Y. Wei, Zhenling Jiang","doi":"10.2139/ssrn.3496098","DOIUrl":null,"url":null,"abstract":"Machine learning tools such as neural networks see increasing applications in marketing and economics for predictive tasks, such as classifying images and forecasting choices. Instead of these predictive tasks, we explore using neural nets to estimate the parameter values for an economic model. The neural net is trained with model-generated datasets. Through training, the neural net learns a direct mapping from (the moments of) a dataset to the parameter values under which the dataset is generated. We show this Neural Net Estimator (NNE) converges to Bayesian parameter posterior when the number of training datasets is sufficiently large. We examine the performance of NNE in two Monte Carlo studies. NNE incurs substantially smaller simulation costs compared to simulated MLE and GMM, while achieving no worse estimation accuracy. NNE is also easy to implement with the wide availability of neural net training packages.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3496098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Machine learning tools such as neural networks see increasing applications in marketing and economics for predictive tasks, such as classifying images and forecasting choices. Instead of these predictive tasks, we explore using neural nets to estimate the parameter values for an economic model. The neural net is trained with model-generated datasets. Through training, the neural net learns a direct mapping from (the moments of) a dataset to the parameter values under which the dataset is generated. We show this Neural Net Estimator (NNE) converges to Bayesian parameter posterior when the number of training datasets is sufficiently large. We examine the performance of NNE in two Monte Carlo studies. NNE incurs substantially smaller simulation costs compared to simulated MLE and GMM, while achieving no worse estimation accuracy. NNE is also easy to implement with the wide availability of neural net training packages.
基于神经网络的结构模型参数估计
神经网络等机器学习工具在市场营销和经济学中越来越多地应用于预测任务,如图像分类和预测选择。代替这些预测任务,我们探索使用神经网络来估计经济模型的参数值。神经网络使用模型生成的数据集进行训练。通过训练,神经网络学习从数据集的矩到生成数据集的参数值的直接映射。当训练数据集的数量足够大时,神经网络估计器(NNE)收敛于贝叶斯参数后验。我们在两个蒙特卡洛研究中检验了NNE的性能。与模拟的MLE和GMM相比,NNE的模拟成本要小得多,同时估计精度也不差。由于神经网络训练包的广泛可用性,NNE也很容易实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信