SCOTS: A Tool for the Synthesis of Symbolic Controllers

M. Rungger, Majid Zamani
{"title":"SCOTS: A Tool for the Synthesis of Symbolic Controllers","authors":"M. Rungger, Majid Zamani","doi":"10.1145/2883817.2883834","DOIUrl":null,"url":null,"abstract":"We introduce SCOTS a software tool for the automatic controller synthesis for nonlinear control systems based on symbolic models, also known as discrete abstractions. The tool accepts a differential equation as the description of a nonlinear control system. It uses a Lipschitz type estimate on the right-hand-side of the differential equation together with a number of discretization parameters to compute a symbolic model that is related with the original control system via a feedback refinement relation. The tool supports the computation of minimal and maximal fixed points and thus natively provides algorithms to synthesize controllers with respect to invariance and reachability specifications. The atomic propositions, which are used to formulate the specifications, are allowed to be defined in terms of finite unions and intersections of polytopes as well as ellipsoids. While the main computations are done in C++, the tool contains a Matlab interface to simulate the closed loop system and to visualize the abstract state space together with the atomic propositions. We illustrate the performance of the tool with two examples from the literature. The tool and all conducted experiments are available at www.hcs.ei.tum.de.","PeriodicalId":337926,"journal":{"name":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883817.2883834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 170

Abstract

We introduce SCOTS a software tool for the automatic controller synthesis for nonlinear control systems based on symbolic models, also known as discrete abstractions. The tool accepts a differential equation as the description of a nonlinear control system. It uses a Lipschitz type estimate on the right-hand-side of the differential equation together with a number of discretization parameters to compute a symbolic model that is related with the original control system via a feedback refinement relation. The tool supports the computation of minimal and maximal fixed points and thus natively provides algorithms to synthesize controllers with respect to invariance and reachability specifications. The atomic propositions, which are used to formulate the specifications, are allowed to be defined in terms of finite unions and intersections of polytopes as well as ellipsoids. While the main computations are done in C++, the tool contains a Matlab interface to simulate the closed loop system and to visualize the abstract state space together with the atomic propositions. We illustrate the performance of the tool with two examples from the literature. The tool and all conducted experiments are available at www.hcs.ei.tum.de.
一个用于合成符号控制器的工具
本文介绍了一种基于符号模型(也称为离散抽象)的非线性控制系统的自动控制器综合软件工具。该工具接受微分方程作为非线性控制系统的描述。它使用微分方程右侧的Lipschitz型估计和一些离散化参数,通过反馈优化关系计算与原始控制系统相关的符号模型。该工具支持最小不动点和最大不动点的计算,从而提供了基于不变性和可达性规范的综合控制器的算法。用于表述规范的原子命题允许用多边形和椭球体的有限并集和交点来定义。虽然主要的计算是在c++中完成的,但该工具包含一个Matlab接口来模拟闭环系统,并将抽象状态空间与原子命题一起可视化。我们用文献中的两个例子来说明该工具的性能。该工具和所有已进行的实验可在www.hcs.ei.tum.de上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信