Applying multivariate data analysis to identify key parameters of bi-directional attack flows

Korakoch Wilailux, S. Ngamsuriyaroj
{"title":"Applying multivariate data analysis to identify key parameters of bi-directional attack flows","authors":"Korakoch Wilailux, S. Ngamsuriyaroj","doi":"10.1109/ACDT.2015.7111611","DOIUrl":null,"url":null,"abstract":"Flow export data has been intensively used in anomaly-based intrusion detection systems; however, we have limited understanding of the characteristics of bi-directional flow parameters with respect to the types of network attacks. To recognize the relationship between traffic parameters, we propose an empirical model which analyzes synthetically generated five network attacks within a closed environment, and perform exploratory data analysis using principal component analysis. The experimental results have identified relevant key parameters for selecting good candidates for intrusion detection analysis. The analysis capabilities of bi-directional flow parameters and their characteristics persisting in selected attacks have been diagnosed and revealed.","PeriodicalId":311885,"journal":{"name":"2015 Asian Conference on Defence Technology (ACDT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asian Conference on Defence Technology (ACDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDT.2015.7111611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flow export data has been intensively used in anomaly-based intrusion detection systems; however, we have limited understanding of the characteristics of bi-directional flow parameters with respect to the types of network attacks. To recognize the relationship between traffic parameters, we propose an empirical model which analyzes synthetically generated five network attacks within a closed environment, and perform exploratory data analysis using principal component analysis. The experimental results have identified relevant key parameters for selecting good candidates for intrusion detection analysis. The analysis capabilities of bi-directional flow parameters and their characteristics persisting in selected attacks have been diagnosed and revealed.
应用多元数据分析方法识别双向攻击流的关键参数
流量导出数据在基于异常的入侵检测系统中得到了广泛的应用;然而,我们对双向流量参数与网络攻击类型的特征的理解有限。为了识别流量参数之间的关系,我们提出了一个经验模型,该模型分析了封闭环境下综合产生的五种网络攻击,并使用主成分分析进行了探索性数据分析。实验结果确定了相关的关键参数,为入侵检测分析选择好的候选对象提供了依据。分析并揭示了所选攻击中双向流量参数的分析能力及其特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信