Timescale of interest in traffic measurement for link bandwidth allocation design

Yonghwan Kim, San-qi Li
{"title":"Timescale of interest in traffic measurement for link bandwidth allocation design","authors":"Yonghwan Kim, San-qi Li","doi":"10.1109/INFCOM.1996.493371","DOIUrl":null,"url":null,"abstract":"Consider the link bandwidth allocation for transport of correlated traffic through a queueing system under a maximum allowable delay constraint d/sub max/. We decomposed the traffic into three frequency regions: low-frequency traffic in 0<|/spl omega/|/spl les//spl omega//sub L/, high-frequency traffic in |/spl omega/|/spl ges//spl omega//sub H/ and mid-frequency traffic in /spl omega//sub L/<|/spl omega/|</spl omega//sub H/. The zero-frequency component (DC term) of the traffic provides the average input rate which corresponds to the minimum link bandwidth requirement. Subject to delay constraint d/sub max/, we identify /spl omega//sub /spl lambda//=0.01/spl pi//d/sub max/ and /spl omega//sub H/=2/spl pi//d/sub max/. Hence, the transport of low-frequency traffic exceeds the limit of d/sub max/-constrained buffer capacity; its link bandwidth is essentially captured by its peak rate. In contrast, for the transport of high-frequency traffic the d/sub max/-constrained buffering is most effective and no additional link bandwidth is required. Essentially, the solution of /spl omega//sub L/ and /spl omega//sub H/ plays a role as \"sampling theory\" in traffic measurement for buffer capacity design and link bandwidth allocation. Equivalently in the time domain, the timescale of the low-frequency traffic is longer than or equal to 200d/sub max/; the timescale of high-frequency traffic is shorter than or equal to d/sub max/. Since the link bandwidth allocation of low- and high-frequency traffic requires no measurement of second-order statistics, the timescale of interest for traffic measurement must be identified in [d/sub max/, 200d/sub max/].","PeriodicalId":234566,"journal":{"name":"Proceedings of IEEE INFOCOM '96. Conference on Computer Communications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE INFOCOM '96. Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.1996.493371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Consider the link bandwidth allocation for transport of correlated traffic through a queueing system under a maximum allowable delay constraint d/sub max/. We decomposed the traffic into three frequency regions: low-frequency traffic in 0<|/spl omega/|/spl les//spl omega//sub L/, high-frequency traffic in |/spl omega/|/spl ges//spl omega//sub H/ and mid-frequency traffic in /spl omega//sub L/<|/spl omega/|
对链路带宽分配设计的流量测量感兴趣的时间标度
考虑在最大允许延迟约束d/sub max/下,通过排队系统传输相关流量的链路带宽分配。我们将流量分解为三个频率区域:低频流量位于0<|/spl omega/|/spl les//spl omega//sub L/,高频流量位于|/spl omega/|/spl ges//spl omega//sub H/,中频流量位于/spl omega//sub L/<|/spl omega/|
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信