Representation Disentanglement in Generative Models with Contrastive Learning

Shentong Mo, Zhun Sun, Chao Li
{"title":"Representation Disentanglement in Generative Models with Contrastive Learning","authors":"Shentong Mo, Zhun Sun, Chao Li","doi":"10.1109/WACV56688.2023.00158","DOIUrl":null,"url":null,"abstract":"Contrastive learning has shown its effectiveness in image classification and generation. Recent works apply contrastive learning to the discriminator of the Generative Adversarial Networks. However, there is little work exploring if contrastive learning can be applied to the encoderdecoder structure to learn disentangled representations. In this work, we propose a simple yet effective method via incorporating contrastive learning into latent optimization, where we name it ContraLORD. Specifically, we first use a generator to learn discriminative and disentangled embeddings via latent optimization. Then an encoder and two momentum encoders are applied to dynamically learn disentangled information across a large number of samples with content-level and residual-level contrastive loss. In the meanwhile, we tune the encoder with the learned embeddings in an amortized manner. We evaluate our approach on ten benchmarks regarding representation disentanglement and linear classification. Extensive experiments demonstrate the effectiveness of our ContraLORD on learning both discriminative and generative representations.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Contrastive learning has shown its effectiveness in image classification and generation. Recent works apply contrastive learning to the discriminator of the Generative Adversarial Networks. However, there is little work exploring if contrastive learning can be applied to the encoderdecoder structure to learn disentangled representations. In this work, we propose a simple yet effective method via incorporating contrastive learning into latent optimization, where we name it ContraLORD. Specifically, we first use a generator to learn discriminative and disentangled embeddings via latent optimization. Then an encoder and two momentum encoders are applied to dynamically learn disentangled information across a large number of samples with content-level and residual-level contrastive loss. In the meanwhile, we tune the encoder with the learned embeddings in an amortized manner. We evaluate our approach on ten benchmarks regarding representation disentanglement and linear classification. Extensive experiments demonstrate the effectiveness of our ContraLORD on learning both discriminative and generative representations.
基于对比学习的生成模型中的表示解缠
对比学习在图像分类和生成中已显示出其有效性。最近的工作将对比学习应用于生成对抗网络的鉴别器。然而,关于对比学习是否可以应用于编码器-解码器结构来学习解纠缠表征的研究很少。在这项工作中,我们提出了一种简单而有效的方法,通过将对比学习纳入潜在优化,我们将其命名为ContraLORD。具体来说,我们首先使用生成器通过潜在优化来学习判别和解纠缠嵌入。然后利用一个编码器和两个动量编码器动态学习具有内容级和残差级对比损失的大量样本中的解纠缠信息。同时,我们用学习到的嵌入以平摊的方式调整编码器。我们在关于表示解纠缠和线性分类的十个基准上评估我们的方法。大量的实验证明了我们的ContraLORD在学习判别表示和生成表示方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信