Using Machine Learning and In-band Network Telemetry for Service Metrics Estimation

L. Almeida, R. Pasquini, F. Verdi
{"title":"Using Machine Learning and In-band Network Telemetry for Service Metrics Estimation","authors":"L. Almeida, R. Pasquini, F. Verdi","doi":"10.1109/CloudNet53349.2021.9657155","DOIUrl":null,"url":null,"abstract":"Data plane programmable devices used together with In-band Network Telemetry (INT) enable the collection of data regarding networks’ operation at a level of granularity never achieved before. Based on the fact that Machine Learning (ML) has been widely adopted in networking, the scenario investigated in this paper opens up the opportunity to advance the state of the art by applying such vast amount of data to the management of networks and the services offered on top of it. This paper feeds ML algorithms with data piped directly from INT - essentially statistics associated to buffers at network devices’ interfaces - with the objective of estimating services’ metrics. The service running on our testbed is DASH (Dynamic Adaptive Streaming over HTTP) - the most used protocol for video streaming nowadays - which brings great challenges to our investigations since it is capable of automatically adapting the quality of the videos due to oscillations in networks’ conditions. By using well established load patterns from the literature - sinusoid, flashcrowd and a mix of both at the same time - we emulate oscillations in the network, i.e., realistic dynamics at all buffers in the interfaces, which are captured by using INT capabilities. While estimating the quality of video being streamed towards our clients, we observed an NMAE (Normalized Mean Absolute Error) below 10% when Random Forest is used, which is better than current related works.","PeriodicalId":369247,"journal":{"name":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet53349.2021.9657155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data plane programmable devices used together with In-band Network Telemetry (INT) enable the collection of data regarding networks’ operation at a level of granularity never achieved before. Based on the fact that Machine Learning (ML) has been widely adopted in networking, the scenario investigated in this paper opens up the opportunity to advance the state of the art by applying such vast amount of data to the management of networks and the services offered on top of it. This paper feeds ML algorithms with data piped directly from INT - essentially statistics associated to buffers at network devices’ interfaces - with the objective of estimating services’ metrics. The service running on our testbed is DASH (Dynamic Adaptive Streaming over HTTP) - the most used protocol for video streaming nowadays - which brings great challenges to our investigations since it is capable of automatically adapting the quality of the videos due to oscillations in networks’ conditions. By using well established load patterns from the literature - sinusoid, flashcrowd and a mix of both at the same time - we emulate oscillations in the network, i.e., realistic dynamics at all buffers in the interfaces, which are captured by using INT capabilities. While estimating the quality of video being streamed towards our clients, we observed an NMAE (Normalized Mean Absolute Error) below 10% when Random Forest is used, which is better than current related works.
利用机器学习和带内网络遥测技术进行服务度量评估
数据平面可编程设备与带内网络遥测(INT)一起使用,能够以前所未有的粒度级别收集有关网络运行的数据。基于机器学习(ML)在网络中被广泛采用的事实,本文所研究的场景通过将如此大量的数据应用于网络管理及其提供的服务,为推进最新技术的发展提供了机会。本文为ML算法提供直接来自INT的数据——本质上是与网络设备接口上的缓冲区相关的统计数据——目的是估计服务的度量。在我们的测试平台上运行的服务是DASH (HTTP上的动态自适应流),这是目前最常用的视频流协议,这给我们的研究带来了很大的挑战,因为它能够自动适应网络条件下的振荡视频的质量。通过使用文献中建立良好的负载模式-正弦,flashcrowd和两者的混合-我们模拟网络中的振荡,即接口中所有缓冲区的真实动态,这些动态通过使用INT功能捕获。在估计流向客户的视频质量时,我们观察到使用随机森林时NMAE(归一化平均绝对误差)低于10%,这比目前的相关工作要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信