{"title":"A high-frequency power amplifier using GaN power cell technology","authors":"M. Li, R. Amaya","doi":"10.1109/WAMICON.2010.5461887","DOIUrl":null,"url":null,"abstract":"This paper describes the design, simulation, packaging and measurement of a 10-GHz Gallium Nitride power amplifier (PA). GaN transistors or power cells with maximum-available gain of 8.7 dB at 10 GHz were used in the design. The power cells were manufactured using a 0.8-µm HFET 9-layer process, while the PA's DC bias lines, input and output matching circuits were built on a low-cost Miniature-Hybrid MIC chip. A flip-chip technology was used to integrate the power cells with the rest of the PA circuit. A class-AB PA was designed to provide an output power of up to 39 dBm at 10 GHz, while maintaining a power-added efficiency (PAE) of 31%. The measurements of the PA are presented and issues related to packaging and measurements are also discussed in the paper.","PeriodicalId":112402,"journal":{"name":"2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAMICON.2010.5461887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes the design, simulation, packaging and measurement of a 10-GHz Gallium Nitride power amplifier (PA). GaN transistors or power cells with maximum-available gain of 8.7 dB at 10 GHz were used in the design. The power cells were manufactured using a 0.8-µm HFET 9-layer process, while the PA's DC bias lines, input and output matching circuits were built on a low-cost Miniature-Hybrid MIC chip. A flip-chip technology was used to integrate the power cells with the rest of the PA circuit. A class-AB PA was designed to provide an output power of up to 39 dBm at 10 GHz, while maintaining a power-added efficiency (PAE) of 31%. The measurements of the PA are presented and issues related to packaging and measurements are also discussed in the paper.